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Abstract

Graph pebbling is a network model for transporting discrete resources that are
consumed in transit. Deciding whether a given configuration on a particular graph
can reach a specified target is NP-complete, even for diameter two graphs, and de-
ciding whether the pebbling number has a prescribed upper bound is ΠP

2 -complete.
Recently we proved that the pebbling number of a split graph can be computed
in polynomial time. This paper continues the program of finding other polyno-
mial classes, moving away from the large tree width, small diameter case (such as
split graphs) to small tree width, large diameter, beginning an investigation on the
important subfamily of chordal graphs called k-trees. In particular, we provide a
formula for the pebbling number of any 2-path.
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1 Introduction

The fundamental question in graph pebbling is whether a given supply (config-
uration) of discrete pebbles on the vertices of a connected graph can satisfy a
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particular set of demands on the vertices. The operation of pebble movement
across an edge is called a pebbling step: while two pebbles cross the edge, only
one arrives at the opposite end, as the other is consumed. The most studied
scenario involves the demand of one pebble on a single root vertex r. Satisfying
this demand is often referred to as reaching or solving r, and configurations
are consequently called either r-solvable or r-unsolvable.

The size |C| of a configuration C : V→N = {0, 1, . . .} is its total number
of pebbles

∑
v∈V C(v). The pebbling number π(G) = maxr∈V π(G, r), where

π(G, r) is defined to be the minimum number s so that every configuration
of size at least s is r-solvable. Simple sharp lower bounds like π(G) ≥ n
and π(G) ≥ 2diam(G) are easily derived. Graphs satisfying π(G) = n are
called Class 0 and are a topic of much interest. Recent chapters in [6] and
[7] include variations on the theme such as k-pebbling, fractional pebbling,
optimal pebbling, cover pebbling, and pebbling thresholds, as well as applica-
tions to combinatorial number theory, combinatorial group theory, and p-adic
diophantine equations, and also contain important open problems in the field.

Computing graph the pebbling number is difficult in general. The problem
of deciding if a given configuration on a graph can reach a particular vertex
was shown in [8] and [10] to be NP-complete, even for diameter two graphs
([4]) or planar graphs ([9]). Interestingly, the problem was shown in [9] to be in
P for graphs that are both planar and diameter two, as well as for outerplanar
graphs (which include 2-trees). The problem of deciding whether a graph G
has pebbling number at most k was shown in [10] to be ΠP

2 -complete.

In contrast, the pebbling number is known for many graphs. For example,
in [11] the pebbling number of a diameter 2 graph G was determined to be n
or n+1. Moreover, [3] and [2] characterized those graphs having π(G) = n+1,
and it was shown in [5] that one can recognize such graphs in quartic time.
Beginning a program to study for which graphs their pebbling number can be
computed in polynomial time, the authors of [1] produced a formula for the
family of split graphs that involves several cases. For a given graph, finding to
which case it belongs takes O(n1.41) time. The authors also conjectured that
the pebbling number of a chordal graph of bounded diameter can be computed
in polynomial time.

In contrast to the small diameter, large tree width case of split graphs, we
turn here to chordal graphs with large diameter and small tree width. In this
paper we study 2-paths, the sub-class of 2-trees whose graphs have exactly
two simplicial vertices, and prove an exact formula that can be computed in
linear time.
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Fig. 1. An overlapping fan graph (left) of diameter 4; fans F1 and F3 are same-sided
(upper) fans, while F2 is a lower fan, opposite-sided from F1 and F3. An overlapping
fan graph with unpleasant (center: v1,3 = v2,1 = v3,1) and pleasant (right: relabeled)
shortest rs-paths.

2 Preliminary Definitions and Results

A simplicial vertex in a graph is a vertex whose neighbors form a complete
graph. It is k-simplicial if it also has degree k. A k-tree is a graph G that
is either a complete graph of size k or has a k-simplicial vertex v for which
G − v is a k-tree. A k-path is a k-tree with exactly two simplicial vertices.
For the purpose of our work we derive a new characterization of 2-trees that
facilitates the analysis of its pebbling number.

Let P = x0, x1, . . . , xd−1, xd be a shortest rs-path between two vertices
r = x0 and s = xd of G, where d = dist(r, s) = diam(G). A fan is a subgraph
F of G consisting of a path Q = a, v1, . . . , vk, c and another vertex b that is
adjacent to every vertex of Q, with the extra condition that a, b, c is a subpath
of P ; we also stipulate that a is closer to r than is c. We call F an ac-fan,
with fan vertices F ′ = {v1, . . . , vk}. The graph G is an overlapping fan graph
if, for every 0 < i < d, there is an xi−1xi+1-fan Fi in G, and every vertex of G
is in some fan of G. In addition, we must have |F ′

i ∩ F ′
i+1| ∈ {0, 1}.

In the 0 (resp. 1) case, we say that Fi and Fi+1 are opposite-sided (resp.
same-sided) fans. We always call F1 an upper fan, which determines all further
fans as upper or lower (opposite-sided from upper) — see Figure 1. In the
|F ′

i ∩ F ′
i+1| = 1 case, if F ′

j = {vj,1, . . . , vj,kj} then vi,ki = vi+1,1. Finally,
|F ′

i−1 ∩ F ′
i+1| ≤ 1, with equality if and only if ki = 1, while |F ′

i ∩ F ′
i+3| = 0.

Note that we can choose P so that |F ′
i−1 ∩ F ′

i+1| = 0 by swapping the names
of vertices xi and vi,1, changing the fans Fi−1, Fi, and Fi+1 from being same-
sided to Fi being opposite-sided from Fi−1 and Fi+1. Such a choice of path P
is called pleasant (see Figure 1).

The following lemma is straightforward to prove by induction.



Lemma 2.1 A graph G is a 2-path if and only if it is an overlapping fan
graph.

With respect to pebbling configurations, we define an empty vertex (or
zero) to be a vertex with no pebbles on it. A big vertex has at least two
pebbles on it; of course, in an r-unsolvable configuration, every path from a
big vertex to the root r must contain at least one zero. A huge vertex v has at
least 2dist(v,r) pebbles on it; of course, no r-unsolvable configuration has a huge
vertex. The cost of a pebbling solution is the number of pebbles lost during
the pebbling steps of that solution, plus one for the pebble that reaches r. A
cheap solution is a solution of cost at most 2diam(G).

The t-pebbling number πt(G) is the minumum number s so that every
configuration of size s is t-fold solvable (i.e., can place t pebbles on any root).
The t-pebbling number is related to the fractional pebbling number, which
measures the limiting average cost of repeated solutions; i.e. limt→∞ πt(G)/t.
It is also used as a powerful inductive tool for computing the pebbling number.
The following theorem was proven in [5].

Theorem 2.2 [5] If G is a graph of diameter 2 then πt(G) ≤ π(G) + 4t− 4.

In what follows we outline the key lemmas and ideas of our proof of the
pebbling number for 2-paths.

3 Result

We first note that diameter 2 2-paths are Class 0.

Lemma 3.1 If G is a 2-path of diameter 2 on n vertices then π(G) = n. In
particular, every size n configuration has a cheap solution to any root.

This is not difficult to argue. Without huge vertices there must be several
big vertices, which are close enough to any root to reach it independently or
cooperatively.

Next we prove the Cheap Lemma, which is the central engine of our main
theorem. The Cheap Lemma shows that large configurations have very nice
solutions, so that we can use it repeatedly to achieve our result. Given a
vertex r of a graph G on n vertices, define the function pt(G, r) = t2d+n−2d,
where d = diam(G).

Lemma 3.2 [Cheap Lemma] Suppose that G is a 2-path on n vertices with
simplicial vertex r, and let C be a configuration on G of size at least pt(G, r).
Then



(i) C is r-solvable and

(ii) if t > 1 there is a cheap r-solution.

Proof sketch. When d = 2, the result is taken care of by Lemma 3.1. So we
will assume that d > 2 and use induction. Suppose that |C| = pt(G, r) and let
P = r, x1, . . . , xd−1, s be a pleasant shortest rs-path between the two simplicial
vertices of G. Label G by its overlapping fan graph labeling, so that V (Fi) =
{xi−1, xi, xi+1, vi,1, . . . , vi,ki} and Qi is the path xi−1, vi,1, . . . , vi,ki , xi+1. Let G

′

be the restriction of G to the n′ vertices of ∪i≥2V (Fi), with C ′ denoting the
restriction of C to G′. We further use the abbreviations C1 = C(F1) and
n1 = n(F1). Notice that diam(G′) = d − 1, so that the Cheap Lemma holds
for G′.

If C(x1) ≥ 1, C(x2) ≥ 2, or C(v1,j) ≥ 2 for some j, then we can place
a pebble on x1. Let’s suppose that F1 and F2 are opposite-sided. If |C ′| −
(1, 2, 0) ≥ p2t−1(G

′, x1), where the coordinates correspond, in order, to the
three cases above, then we can place another pebble on x1, cheaply if 2t−1 ≥ 2.
Thus we can solve r, and at a cost of at most 2d−1 + 2 ≤ 2d when t ≥ 2.
Otherwise, |C ′| − (1, 2, 0) ≤ p2t−1(G

′, x1)− 1. That is, |C ′| ≤ [(2t − 1)2d−1 +
n′ − 2(d − 1)] + (0, 1,−1). Thus |C1| ≥ |C| − |C ′| + (1, 2, 0) ≥ 2d−1 + (n1 −
2)− 2 + (1, 1, 1) = n1 + (2d−1 − 3) > n1, which means by Lemma 3.1 that we
can solve r with cost at most 4 < 2d. The case for same-sided F1 and F2 is
similar.

On the other hand, if C(x1) = 0, C(x2) ≤ 1, and C(v1,j) ≤ 1 for all
j, then C(r, v1,1, . . . , v1,k1−1) ≤ k1 − 1. Define σ = 1 (0) if F2 is same-
sided (opposite-sided) as F1, so that |C ′| ≥ p3(G

′, x1) when t ≥ 2. Thus
we can use induction to place a pebble cheaply on x1, after which at least
p3(G

′, x1) − 2d−1 = p2(G
′, x1) pebbles remain, and so we can place another

pebble cheaply on x1, and hence one cheaply on r.

The analysis proceeds similarly for the case in which t = 1, taking into
account the number o′ of zeros in {v1,1, . . . , v1,k1}. When o′ − 1 − σ ≥ 0 one
can use induction twice to place two pebbles on x1, and hence one on r. Thus
we may assume that o′ − 1− σ < 0. If o′ = 0 then one can solve r by placing
two pebbles on x2 and then moving to r along Q1. Otherwise o′ = 1, which
means that σ = 1. We use induction twice again, as follows. When v1,k1 is
not empty, we solve r by placing two pebbles on x1. When v1,k1 is empty, we
place two pebbles on v1,k1 and solve r via Q1. ✷

Theorem 3.3 If G is a 2-path of diameter d on n vertices then πt(G) =
t2d + n− 2d.



Proof sketch. It is not difficult to argue that πt(G, r) is maximized when
r is simplicial; then the upper bound follows from the Cheap Lemma 3.2 by
induction. The lower bound comes from the existence of a t-fold r-unsolvable
configuration of size t2d+n−2d−1. Let S be a collection of pairwise disjoint
separating edges, exactly one per fan. Define C by placing t2d − 1 pebbles on
one simplicial vertex and one pebble on each of the remaining vertices, except
none on r or V (S). It can be shown by induction that t pebbles cannot be
moved to r. ✷
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4 Appendix

Here we give the full proof of the Cheap Lemma.

Proof. When d = 2, the result is taken care of by Lemma 3.1. So we
will assume that d > 2 and use induction. Suppose that |C| = pt(G, r)
and let P = r, x1, . . . , xd−1, s be a pleasant shortest rs-path between the two
simplicial vertices of G. Label G by its fan graph labeling, so that V (Fi) =
{xi−1, xi, xi+1, vi,1, . . . , vi,ki} and Qi is the path xi−1, vi,1, . . . , vi,ki , xi+1. Let G

′

be the restriction of G to the n′ vertices of ∪i≥2V (Fi), with C ′ denoting the
restriction of C to G′. We further use the abbreviations C1 = C(F1) and
n1 = n(F1). Notice that diam(G′) = d− 1, so that the Theorem holds for G′.

If C(x1) ≥ 1, C(x2) ≥ 2, or C(v1,j) ≥ 2 for some j, then we can place
a pebble on x1. Let’s suppose that F1 and F2 are opposite-sided. If |C ′| −
(1, 2, 0) ≥ p2t−1(G

′, x1), where the coordinates correspond, in order, to the
three cases above, then we can place another pebble on x1, cheaply if 2t−1 ≥ 2.
Thus we can solve r, and at a cost of at most 2d−1 + 2 ≤ 2d when t ≥
2. Otherwise, |C ′| − (1, 2, 0) ≤ p2t−1(G

′, x1) − 1. That is, |C ′| ≤ [(2t −
1)2d−1 + n′ − 2(d − 1)] + (0, 1,−1). Thus |C1| ≥ |C| − |C ′| + (1, 2, 0) ≥
2d−1 + (n1 − 2)− 2 + (1, 1, 1) = n1 + (2d−1 − 3) > n1, which means by Lemma
3.1 that we can solve r with cost at most 4 < 2d. If instead F1 and F2 are
same-sided, then all these calculations are the same, except in the instance
of the third case above for which j = k1. In this instance we consider when
|C ′| − 2 ≤ p2t−1(G

′, x1)− 1; i.e., |C ′| ≤ [(2t− 1)2d−1 +n′ − 2(d− 1)] + 1. Thus
|C1| ≥ |C| − |C ′|+ 2 ≥ 2d−1 + (n1 − 3)− 2 + 1 = n1 + (2d−1 − 4) ≥ n1, which
means by Lemma 3.1 that we can solve r with cost at most 4 < 2d.

On the other hand, if C(x1) = 0, C(x2) ≤ 1, and C(v1,j) ≤ 1 for all j,
then C(r, v1,1, . . . , v1,k1−1) ≤ k1 − 1. Define σ = 1 (0) if F2 is same-sided
(opposite-sided) as F1, so that

|C ′| ≥ |C| − (k1 − σ)

= (t2d + n− 2d)− (k1 − σ)

= (2t)2d−1 + n′ − 2(d− 1)− 1

≥ (3)2d−1 + n′ − 2(d− 1)

= p3(G
′, x1) ,

when t ≥ 2. Thus we can use induction to place a pebble cheaply on x1, after
which at least p3(G

′, x1) − 2d−1 = p2(G
′, x1) pebbles remain, and so we can

place another pebble cheaply on x1, and hence one cheaply on r.



It remains to handle the case in which t = 1. Here we define o to be the
number of zeros in {v1,1, . . . , v1,k1 , x2}, so that |C1| = n1 − 2− o, and set o′ to
be the number of those zeros other than x2 (i.e. o− o′ = 1−C(x2)). Now we
have

|C ′| ≥ |C| − |C1|+ C(x2)

= (2d + n− 2d)− (n1 − 2− o) + C(x2)

= (2)2d−1 + (n′ − 2− σ)− 2d+ 2 + o+ C(x2)

= [(2)2d−1 + n′ − 2(d− 1)] + [C(x2) + o− 2− σ]

= p2(G
′, x1) + [o′ − 1− σ].

If o′−1−σ ≥ 0 then |C ′| ≥ p2(G
′, x1), which means, by using induction twice,

that we can place two pebbles on x1. Therefore, we can solve r.

Otherwise, we have o′ − 1 − σ < 0, which means that o′ ≤ σ. If o′ = 0,
that is C(v1,j) = 1 for all j, then we will show that it is possible to place two
pebbles on x2, from which we solve r by moving pebbles from x2 along Q1.
Indeed, this is so if C(x2) = 1 and Q2 has a big vertex, or if Q2 contains either
a vertex with four pebbles or two big vertices, so we assume otherwise. In this
case, we have C((F1∪F2)−G′′) ≤ |(F1∪F2)−G′′|, where G′′ is the restriction
of G to the n′′ vertices of ∪i≥3V (Fi). For the restriction C ′′ of C to G′′, this
implies that

|C ′′| = |C| − C((F1 ∪ F2)−G′′)

≥ 2d + n′′ − 2d

= [2d−1 + n′′ + 2(d− 2)] + [2d−1 − 4]

≥ p2(G
′′, x2) ,

since d ≥ 3, and so we can place two pebbles on x2.

We are left now with the final case in which o′ = 1 (exactly one v1,j is
empty), which means that σ = 1 (F1 and F2 are same-sided, so that v1,k1 =
v2,1).

If v1,k1 is not empty then k1 ≥ 2, and so

|C ′| = |C| − (k1 − 2)

= (2)2d−1 + (n− k1)− 2(d− 1)

= p2(G
′, x1) .



This means, by using induction twice, that we can place two pebbles on x1,
and hence one on r.

If instead v1,k1 is empty then set Ĝ = G′ − x1 and Ĉ = C(Ĝ), so that

|Ĉ| = |C| − (k1 − 1)

= (2)2d−1 + (n− k1 − 1)− 2(d− 1)

= p2(Ĝ, v1,k1) .

This means, by using induction twice, that we can place two pebbles on v1,k1 ,
and hence one on r (via Q1).

This completes the proof. ✷
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