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Abstract. The graph pebbling model we study here was born as a method for
solving a combinatorial number theory conjecture of Erdős and Lemke and has since
been applied to problems in combinatorial group theory and p-adic diophantine equa-
tions. Related pebbling models have found applications in computational complexity,
compiler theory, graph searching, sparse matrix factorization, and computational ge-
ometry. The subject has grown in the last two decades into a network optimization
model for the transportation of consumable resources. When two pebbles are moved
across an edge, only one of them arrives at the other end while the other is lost, as if
to a toll. The most basic question asks if it is possible to move from one configura-
tion of pebbles to another via this pebbling rule. Here we present the current state of
knowledge regarding best, worst, and average case scenarios of this paradigm, as well
as random, fractional, and other versions. Along the way we survey the important
methods and algorithmic considerations.
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Introduction

Graph Pebbling is a network optimization model for the transportation of resources
that are consumed in transit. Electricity, heat, or other energy may dissipate as it
moves from one location to another, oil tankers may use up some of the oil it transports,
information may be lost as it travels through its medium, or military troops may be
lost while moving through a region. The central problem in this model asks whether
discrete pebbles from one set of vertices can be moved to another while pebbles are
lost in the process.

A typical question asks how many pebbles are necessary to guarantee that, from any
configuration of that many pebbles, one can move a pebble to (“solve”) any particular
vertex. A fractional version asks for the limiting behavior of the average number of
pebbles used per “solution”. Instead of placing the initial pebbles cleverly, if the original
configuration is chosen at random then we can wonder what the probability is that
every vertex can be solved, which gives rise to the notion of a threshold, which divides
almost sure success and almost sure failure. One may also ask: how few pebbles can
be used so that, from some configuration of that many pebbles, one can move a pebble
to any particular vertex; how many pebbles are required to guarantee that, from any
configuration of that many pebbles, some pebble can travel at least some fixed distance;
and other questions. Good surveys of the subject can be found in [51, 53, 55].

Various rules for pebbling steps have been studied for years and have found ap-
plications in a wide array of areas. One version, dubbed black and white pebbling,
was applied to computational complexity theory in studying time-space tradeoffs (see
[48, 69]), as well as to optimal register allocation for compilers (see [72]). Connections
have been made also to pursuit and evasion games and graph searching (see [58, 68]).
Another (black pebbling) is used to reorder large sparse matrices to minimize in-core
storage during an out-of-core Cholesky factorization scheme (see [36, 61, 63]). A third
version yields results in computational geometry in the rigidity of graphs, matroids,
and other structures (see [39, 73]). The rule we study here originally produced results
in combinatorial number theory and combinatorial group theory (the existence of zero
sum subsequences — see [15, 28]) and have recently been applied to finding solutions in
p-adic diophantine equations (see [62]). Most of these rules give rise to computationally
difficult problems.

Notation. All graphs considered are simple and connected. We follow fairly standard
graph terminology (e.g. [76]), with a graph G = (V,E) having n = n(G) vertices
V = V (G), with edges E = E(G). The eccentricity ecc(G, r) for a vertex r ∈ V equals
maxv∈V dist(v, r), where dist(x, y) denotes the length (number of edges) of the shortest
path from x to y; the diameter diam(G) = maxr∈V ecc(G, r). Other well known graph
parameters such as girth, connectivity, radius, and domination number of a graph G
are written gir(G), κ(G), rad(G), and dom(G), respectively, and the minimum degree
of G is denoted δ(G). When H is a subgraph of G, we write G−H to denote the graph
having vertices V (G−H) = V (G) and edges E(G−H) = E(G)− E(H).

Common graphs (on n vertices) such as the complete graph, path, and cycle are
denoted Kn, Pn, and Cn, respectively. The d-dimensional cube Qd has n = 2d vertices.
Finally, we write lg for the base 2 logarithm, and N and R≥0 for the sets of nonnegative
integers and reals.
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Figure 1. Two r-unsolvable configurations on the path P7.

1. Solvability

Here we develop the notion of moving from one configuration of pebbles to another
via pebbling steps.

1.1. Basic Definitions. A configuration C on a graph G is a function C : V (G)→N.
The value C(v) signifies the number of pebbles at vertex v. A vertex with no pebbles
on it is called empty and a vertex with more than one pebble on it is called big. The
size |C| of a configuration C on a graph G is the total number of pebbles on G; i.e.
|C| =

∑

v∈V (G)C(v). We also write C(S) =
∑

v∈S C(v) for a subset S ⊆ V (G) of

vertices. For an edge {u, v} ∈ E(G), if u has at least two pebbles on it, then a pebbling
step from u to v removes two pebbles from u and places one pebble on v. That is, if C
is the original configuration, then the resulting configuration C ′ has C ′(u) = C(u)− 2,
C ′(v) = C(v) + 1, and C ′(x) = C(x) for all x ∈ V (G)− {u, v}. A pebbling step from
u to v is r-greedy if dist(v, r) < dist(u, r). It is r-semigreedy if dist(v, r) ≤ dist(u, r).

We say that a configuration C on G is r-solvable if it is possible from C to place
a pebble on r via pebbling steps. It is r-unsolvable otherwise. More generally, for a
configuration D, we say that C is D-solvable if it is possible to perform pebbling steps
from C to arrive at another configuration C ′ for which C ′(v) ≥ D(v) for all v ∈ V (G).

It is D-unsolvable otherwise. We denote by ~G(σ) the directed subgraph of G induced
by a set σ of pebbling steps. We say that a configuration C on G is k-fold r-solvable if
it is possible from C to place k pebbles on r via pebbling steps. Note that the k-fold
r-solvability of C is the specific instance of D-solvability for which D has k pebbles on
r and none elsewhere, a configuration we denote by kIr (or Ir when k = 1).

For a graph G and a particular root vertex r, the rooted pebbling number π(G, r) is
defined to be the minimum number t so that every configuration C on G of size t is
r-solvable. The rooted k-pebbling number πk(G, r) is defined analogously for k-fold
solvability. Note that the configuration that places one pebble on every vertex except
r shows that π(G, r) ≥ n(G) always. This is often referred to as the Vertex Bound.
An example of this bound being tight is the complete graph; the Pigeonhole Principle
implies that π(Kn, r) = n for all r.

Because the r-solvability of a configuration is not destroyed by adding edges, we have
for every root vertex r that π(H, r) ≥ π(G, r) whenever H is a connected, spanning
subgraph of G. We call this the Subgraph Bound.

Figure 1 shows two configurations on the path P7, neither of which are r-solvable.
Section 1.2 will develop methods to explain why in many cases, but the reader can
probably construct a nice argument here. The configuration on the right shows that
π(P7, r) ≥ 19; in fact, it is not difficult to argue that π(P7, r) = 19, and that the
largest rooted pebbling number π(P7, r

′) = 64 occurs when r′ is one of the endpoints
of the path. In general, the configuration that places 2ecc(G,r) − 1 pebbles on a vertex
of maximum distance from r witnesses the Distance Bound π(G, r) ≥ 2ecc(G,r).

A sequence of paths P = (P [1], . . . , P [h]) is a maximum r-path partition of a rooted
tree (T, r) if P forms a partition of E(T ), r is a leaf of P [1], Ti = ∪i

j=1P [j] is a
tree for all 1 ≤ i ≤ h, and P [i] is a maximum length path in T − Ti−1, among all
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Figure 2. An r-unsolvable configuration on a tree.

Figure 3. An r-solvable configuration with no tree solution.

such paths with one endpoint in Ti−1, for all 1 ≤ i ≤ h. We define the function
f(T, r) =

∑h
i=1 2

li − h+ 1, where (l1, . . . , lh) is the sequence of lengths li = diam(P [i])
in a maximum r-path partition P of a rooted tree (T, r). Figure 2 shows an r-unsolvable
configuration of size f(T, r)− 1 that is based on a maximum r-path partition: for each
path P [i], 2li − 1 pebbles are placed on the endpoint not in Ti−1. For example P [1] is
the path from the leaf with 255 pebbles on it to r, P [2] is the potion of the path from
the leaf with 31 pebbles on it to r that shares no edges with T1 = P [1], etc.

Theorem 1.1. [15] The rooted pebbling number of a tree T is π(T, r) = f(T, r).

We leave the proof to the exercises. The key is to define fk(T, r) = f(T, r)+(k−1)2l1

and prove more generally that πk(T, r) = fk(T, r). At least two induction proofs are
possible: one that removes the root (or, equivalently, includes a copy of r in each
component of G − r) and one that removes a minimum length path in the maximum
r-path partition.

Because the exact pebbling number for trees is known, a rooted spanning of a graph
makes an excellent choice for use with the Subgraph Bound. However, it is not sufficient
to consider trees only. That is, for a given set σ of pebbling steps, let G(σ) be the set

of edges of G that are used by σ, and let ~G(σ) be the multiset of directed versions of
the edges of G(σ) (some edges are traversed more than once), with orientations given
by the directions of the pebbling steps. We say that a configuration C is tree-solvable
if G(σ) is a tree for some solution σ. Then Figure 3 shows that not every configuration
is tree-solvable. However, something tree-like is true.

Lemma 1.2. [No-Cycle Lemma] [13] If a configuration C is D-solvable then there

exists a D-solution σ for which ~G(σ) is acyclic.

Furthermore, recall that a pebbling step from u to v is r- (semi-) greedy if dist(v, r) <
dist(u, r) (resp. ≤). A set of pebbling steps is r- (semi-) greedy if every one of its steps
is r- (semi-) greedy, a configuration is r- (semi-) greedy it is has an r- (semi-) greedy
solution, and a graph G is r- (semi-) greedy if every configuration of size at least π(G, r)
is r- (semi-) greedy. We also say that G is (semi-) greedy if it is r- (semi-) greedy for
every choice of r. The No-Cycle Lemma shows that every tree is greedy. While it is
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Figure 4. A rooted tree with a nonbasic r-strategy.

not difficult to construct configurations on large cycles that are not r-semi-greedy, even
cycles are greedy and odd cycles are semi-greedy (see the exercises).

The No-Cycle Lemma gives structure to minimum-sized r-solutions. The following
lemma gives structure to maximum-sized r-unsolvable configurations. A thread in a
graph G is a subpath of G whose vertices have degree two in G. A thread with all its
pebbbles sitting on one or two adjacent of its vertices is called squished.

Lemma 1.3. [Squishing Lemma] [13] For every root vertex r of a graph G there is
a maximum-sized r-unsolvable configuration such that each thread not containing r is
squished.

The proof uses the notion of squishing moves. A squishing move removes 1 pebble
from each of two vertices on a thread and places 2 pebbles on some vertex between
them on the thread. By using the No-Cycle Lemma, one can show that if C is r-
unsolvable and C ′ is obtained from C by performing a squishing move, then C ′ is also
r-unsolvable.

The Squishing Lemma can be used to give a relatively short proof of the following
theorem.

Theorem 1.4. [67] For every root vertex r in the cycle Cn, we have π(C2k, r) = 2k for
all k ≥ 2 and π(C2k+1, r) = ⌈(2k+2 − 1)/3⌉ for all k ≥ 1.

This follows because, for an even cycle, a squished r-unsolvable configuration has all
its pebbles on one “half” of the cycle, which is the path Pk. For an odd cycle, if this is
not the case then the pebbles sit on the two vertices opposite r, in which case moving
half the pebbles from the smaller to the larger vertex suffices.

1.2. Weight Functions. Weight functions can be used to provide both upper and
lower bounds on rooted pebbling numbers of graphs. Let wt denote the weight function
wt : V (G)→R≥0 defined by wt(v) = 2−dist(v,r) for all v ∈ V (G).

More generally, for a tree T rooted at a vertex r we define the parent of vertex
v ∈ V (T )−{r} to be the unique neighbor v+ of v for which dist(v+, r) = dist(v, r)− 1.
In this case v is a child of v+. We say that a rooted subtree (T, r) of (G, r) is an r-
strategy if associated with it is a weight function w : V (G)→R≥0 having the properties
that w(v) = 0 for all v 6∈ V (T ) and w(v+) ≥ 2w(v) for every vertex v 6= r. The
r-strategy T is basic if equality holds for all such v ∈ V (T ) (for example, the strategy
in Figure 4 is nonbasic). For a rooted graph (G, r) with r-strategy (T,w), we say that
the weight of a vertex v is w(v) when v ∈ T and 0 otherwise, and define the weight of
a configuration C on G to be

w(C) =
∑

v∈V (G)

C(v)w(v).
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Note that wt is the weight function for any breadth-first search spanning tree of (G, r),
where wt(r) = 1. The following proposition is straighforward.

Proposition 1.5. If C is a configuration on the rooted graph (G, r) and C ′ is the
configuration obtained from C after a pebbling step from u to v then, for any basic
r-strategy (T,w) of (G, r) containing the edge {u, v}, we have w(C ′) ≤ w(C), with
equality if and only if w(v) = 2w(u) (when w = wt this means that the step is greedy).

Since a configuration with a pebble on r has weight 1, it follows (by using w = wt on
a breadth-first search spanning tree T ) that other r-solvable configurations can only
have greater weight.

Corollary 1.6. If C is an r-solvable configuration on G then wt(C) ≥ 1.

The typical use of Corollary 1.6 is in contrapositive form: a configuration C with
weight less than 1 is r-unsolvable, and hence π(G, r) > |C|. It turns out that weight
characterizes solvability on paths. We leave the proof to the exercises.

Theorem 1.7. A configuration C on a path rooted at a leaf r is r-solvable if and only
if wt(C) ≥ 1.

The same theorem does not hold for trees. Indeed, consider the graph Y = K1,3 with
root r at one leaf and unknown configuration C with 4 pebbles placed only among the
other two leaves. Then we know that wt(C) = 1, but C is r-solvable if and only if
it has no odd vertices; i.e. vertices with an odd number of pebbles. Moreover, if one
views the r-unsolvable configurations on Y as points in N

3 (we ignore a coordinate for
r since C(r) = 0 always), then the r-solvable configuration with 2 pebbles on each leaf
is a convex combination of the two r-unsolvable configurations with 1 and 3 pebbles
on them instead. More on this idea in a moment.

We denote by Jr the configuration on any rooted graph (G, r) having no pebbles on
r and one pebble on every other vertex. The main use of strategies is to provide upper
bounds on rooted pebbling numbers. The following lemma is crucial to this, and can
be proved easily by induction (see the exercises).

Lemma 1.8. [Weight Function Lemma] [52] Let (T,w) be an r-strategy of the
rooted graph (G, r) and suppose that C is an r-unsolvable configuration on G. Then
w(C) ≤ w(Jr).

For a rooted graph (G, r) on n vertices, let C be the set of all r-unsolvable configu-
rations on G, viewed as points in N

n−1: each C ∈ C is identified with the coordinates
(C(v2), . . . , C(vn)), where V (G) = {r, v2, . . . , vn}. The convex hull of C in R

n−1 is called
the r-unsolvability polytope of G, denoted U(G, r). The configurations on the graph Y
above show that, sometimes, U(G, r) also contains r-solvable configurations. However,
none of its extreme points are r-solvable, which gives rise to some linear optimization
ideas. First note that π(G, r) = 1 + max{|C| | C ∈ U(G, r)}.

Define the r-strategy polytope T(G, r) in R
n−1 by the set of linear inequalities given by

the Weight Function Lemma over all r-strategies. For a polytope P of configurations on
a rooted graph (G, r) define zP(G, r) = maxC∈P |C| and πP(G, r) = ⌊zP(G, r)⌋+1. The
Weight Function Lemma implies that U(G, r) ⊆ T(G, r), which proves the following.

Proposition 1.9. [52] For every rooted graph (G, r) we have π(G, r) = πU(G, r) ≤
πT(G, r) ≤ πT′(G, r), where T

′ is any polytope containing T.

The use of Proposition 1.9 is called the weight function method. It is often applied
with T

′ defined by very few (frequently only deg(r)) r-strategies, as in Figure 5 (proving



GRAPH PEBBLING 7

Figure 5. A rooted cycle with (left) its maximum r-unsolvable config-
uration and (right) two basic r-strategies.

Figure 6. Two basic strategies that prove that π(L, r) = 8.

that π(C7, r) = 15). One can use this method to prove that π(L, r) = 8 for all r (L
is called the Lemke graph, to be discussed in Subsection 2.1), an example of which is
shown in Figure 6. One special consequence of Lemma 1.8 is the following.

Lemma 1.10. [Uniform Covering Lemma] [52] Let G be a graph on n vertices. If
some collection of r-strategies {(Ti,wi)}ki=1 has the property that there is a constant c

such that, for every v ∈ V (G)− {r}, we have
∑k

i=1 wi(v) = c, then π(G, r) = n.

Proof. The Weight Function Lemma inequality can be rewritten as
∑

v∈V (G)−{r}
C(v)w(v) ≤

∑

v∈V (G)−{r}
w(v).

Given the r-strategies {(Ti,wi)}ki=1, we can sum all their inequalities together to obtain

k
∑

i=1

∑

v∈V (G)−{r}
C(v)wi(v) ≤

k
∑

i=1

∑

v∈V (G)−{r}
wi(v),

∑

v∈V (G)−{r}
C(v)

k
∑

i=1

wi(v) ≤
∑

v∈V (G)−{r}

k
∑

i=1

wi(v), and

c|C| ≤ c(n− 1),

for all r-unsolvable C, from which follows |C| ≤ n − 1. Hence if |C| ≥ n then C is
r-solvable. �

Exercises.

(1) The path Pn on n vertices has rooted pebbling number π(Pn, r) = 2n−1 when r
is one of its leaves.

(2) Let P be the Petersen graph and r be any of its vertices. Prove (without using
Lemma 1.8 or its consequences) that π(P, r) = 10.
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(3) Every graph G on n vertices has rooted pebbling number π(G, r) ≤ (n −
1)(2eccG(r) − 1) + 1 for every root vertex r.

(4) Use induction to prove Theorem 1.1.
(5) [19] Let G be a graph in which each of its blocks is a clique, and suppose that T

is a breadth-first search spanning tree of G rooted at r. Then π(G, r) = π(T, r).
(6) Prove Lemma 1.2 by considering minimal solutions.
(7) Find the largest c for which there is a configuration on the cycle Cn of size at

least cπ(Cn, r) that is r-solvable but not r-semi-greedy.
(8) Prove Lemma 1.3.
(9) Use Lemma 1.3 to prove Theorem 1.4.

(10) Prove Theorem 1.7.
(11) Use induction to prove Lemma 1.8.
(12) Prove that every r-strategy is a conic combination of basic r-strategies. That is,

for every r-strategy (T,w) of a rooted graph (G, r), there are basic r-strategies
(T1,w1), . . . , (Th,wh) of (G, r) and nonnegative coefficients α1, . . . , αh so that,

for all v ∈ v(G), we have w(v) =
∑h

i=1 wi(v).
(13) Use Proposition 1.9 to prove Theorem 1.1. (HINT: Relate Figures 2 and 4 to

each other.)
(14) Let P be the Petersen graph and r be any of its vertices. Use Lemma 1.10 to

prove that π(P, r) = 10.
(15) Let L be the Lemke graph and r be any of its vertices. Use Lemma 1.8 to prove

that π(L, r) = 8.
(16) Use Lemma 1.8 to prove Theorem 1.4.
(17) (Open) Is there a characterization for r-solvable configurations on trees rooted

at r?
(18) (Open) Is πT(G, r) ≤ 2π(G, r) for every rooted graph (G, r)?
(19) (Open) Find larger classes of strategies than those arising from trees.

2. Pebbling Numbers

We turn our attention now to configurations that are r-solvable for every possible
root r.

We say that a configuration C on G is (k-fold) solvable if it is (k-fold) r-solvable
for every vertex r. The k-fold pebbling number πk(G) is defined to be the minimum
number t so that every configuration C on G of size t is k-fold solvable. In other words,
πk(G) = maxr πk(G, r). (We write pi(G) = π1(G).) From the prior section, then, we
have π(Kn) = n, π(Pn) = 2n−1, π(C2k) = 2k for all k ≥ 2, π(C2k+1) = ⌈(2k+2 − 1)/3⌉
for all k ≥ 1, and π(P ) = 10.

In this realm the version of the Distance Bound becomes π(G) ≥ 2diam(G). Interest-
ingly, both the Vertex and Distance Bounds give π(Qd) ≥ 2d. In the very first graph
pebbling paper, Chung proved the important result (below) that this bound is tight.
The result is important because of its number theoretic application.

2.1. Graph Products. For two graphs G1 and G2, define the cartesian product G1 G2

to be the graph with vertex set V (G1 G2) = {(v1, v2) | v1 ∈ V (G1), v2 ∈ V (G2)} and
edge set E(G1 G2) = {{(v1, v2), (w1, w2)} | (v1 = w1 and (v2, w2) ∈ E(G2)) or (v2 = w2

and (v1, w1) ∈ E(G1))}. We write Πk
i=1Gi to mean G1 . . . Gk and set Gk = Πk

i=1G.
Thus Qd = P d

2 .
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Figure 7. The Lemke graph with a 2-fold r-unsolvable configuration.

Figure 8. An infinite family of rooted Lemke graphs.

Theorem 2.1. [15] The d-dimensional cube Qd has π(Qd) = 2d. More generally, let
G = Πk

i=1Pli+1 be the cartesian product of k paths of lengths li = diam(Pli+1), with

l = diam(G) =
∑k

i=1 li. Then π(G) = 2l.

The proof of this result depends on an interesting property involving 2-fold solvabil-
ity. In general, for configurations C with C(r) = 0, solving r is equivalent to 2-fold
solving some neighbor of r. Certainly, π2(G) ≤ 2π(G): pretend that half of the 2π(G)
pebbles are red and half are blue; then each color provides a solution. But fewer peb-
bles might suffice: after the red solution there may be residual red pebbles that could
be used for the blue solution. Thus, instead of measuring a configuration by size only,
we include a bit of its structure.

The support supp(C) of a configuration C on G is the set of vertices that have a
pebble of C; i.e. supp(C) = {v ∈ V (G) | C(v) > 0}. The size of the support is denoted
s(C) = |supp(C)|. A graph G has the 2-pebbling property (2PP) if every configuration
C of size at least 2π(G)− s(C)+ 1 is 2-fold solvable. For example, the complete graph
Kn has the 2-pebbling property because the maximum number of pebbles that can be
placed on s vertices without having either, in the case of some vertex being empty, two
vertices with at least two pebbles or one vertex with at least four pebbles is s + 2 or,
in the case of no vertex being empty, one vertex with at least two pebbles is s, which
in both cases is stricly less than 2n− s+ 1.

Lemke discovered the graph L in Figure 7. It is the smallest graph that does not
have 2PP: we have π(L) = 8 and |C| = 12 = 2(8) − 5 + 1, but C cannot place two
pebbles on r. Any graph not satisfying 2PP is called a Lemke graph; L is the Lemke
graph. Wang [75] was the first to find infinitely many graphs (see Figure 8) without
2PP. His sequence was based on an earlier sequence conjectured by Foster and Snevily
[30].

The odd support suppo(C) of a configuration C is the set of vertices that have an odd
number of pebbles of C. The size of the odd support is denoted so(C) = |suppo(C)|.
A graph G has the odd 2-pebbling property (O2PP) if every configuration C of size at
least 2π(G)− so(C) + 1 is 2-fold solvable.
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The key to Chung’s proof that

(2.1) π(Qd) = 2d

is to prove along with it that

(2.2) Qd has O2PP.

This is done simultaneously by induction, as each is trivially true when d = 0. We split
Qd naturally into two copies, Q1 and Q2, each isomorphic to Qd−1, with r ∈ Q1 and its
neighbors r′ ∈ Q2. The restriction Ci of C on Qi has size |Ci| = ti, and σo(Ci) = σi.

First we prove (2.1). Of course, if t1 ≥ 2d−1 the C1 is r-solvable by induction, so we
assume otherwise. If σ2 > t1 then t2 = 2d − t1 > 2π(Q2) − σ2 and so, by induction
on (2.2), C2 is 2-fold r′-solvable, and hence r-solvable. Thus we may assume that
σ2 ≤ t1. In this case we can move (t2 − σ2)/2 pebbles from Q2 to Q1, resulting in
t1 + (t2 − σ2)/2 ≥ t1 + (t2 − t1)/2 = (t1 + t2)/2 = 2d−1 = π(Q1) pebbles in Q1, which
means one pebble can be moved to r from these.

Next we prove (2.2); now we have t1 + t2 = 2d+1 − σ1 − σ2 + 1. Of course, if
t1 ≥ 2d − σ1 + 1 then C1 is 2-fold r-solvable. If 2d−1 ≤ t1 ≤ 2d − σ1, then C1 is r-
solvable and C2 is 2-fold r′-solvable (see exercises). If t1 < 2d−1 then the trick is to move
the right number of pebbles from Q2 to Q1 so that the resulting number of pebbles in
Q1 is r-solvable while the remaining number of pebbles in Q2 is 2-fold r′-solvable (see
exercises).

Chung’s result gave rise to the following conjecture, which many feel is the Holy
Grail of the subject.

Conjecture 2.2. [Graham’s Conjecture] Every pair of graphs G1 and G2 satisfy
π(G1 G2) ≤ π(G1)π(G2).

Many instances of this conjecture have been verified, including when G1 and G2 are
both cycles ([30, 40]) or both trees ([15, 30]), and when G1 is a tree, cycle, complete
graph, or complete bipartite graph and G2 has 2PP ([15, 64, 41]). The latter instance
has provided motivation for studying 2PP, giving rise to results like the following.

Proposition 2.3. [67] If diam(G) = 2 then G has 2PP.

Proposition 2.4. [34] If G is a bipartite graph with largest part size s ≥ 15 and
minimum degree at least ⌈ s+1

2
⌉ then π(G) = n and G has 2PP.

The techniques of the next subsection can be used to prove Theorem 2.5.

Theorem 2.5. [26] Graham’s Conjecture is satisfied when δ(Gi) ≥ k ≥ 212n/k+15.

But hold your horses; Hurlbert [52] suggests that L2 might be a counterexample to
Graham’s Conjecture.

2.2. Diameter, Connectivity, and Class 0. In this subsection we study graphs
having smallest possible pebbling number. We say that a graph G is of Class 0 if
π(G) = n. Examples of Class 0 graphs we have seen so far include Kn, P , L, Qd,
Cd

5 , and bipartite graphs from Proposition 2.4. One way of constructing new Class
0 graphs from old ones, if Graham’s Conjecture were true, would be via cartesian
product. Another way comes from the following type of graph sum. Let G1 + G2

denote the disjoint union of G1 and G2.

Theorem 2.6. [49] Given Class 0 graphs G1 and G2 let F be any bipartite subgraph
of V (G1)× V (G2) with no isolated vertices. Then (G1 +G2) ∪ F is Class 0.
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Note that this generalizes Theorem 2.1 because Qd+1 = (Qd + Qd) ∪ F , where F is
a perfect matching.

The first considerations of fixed diameter graphs came from a result of Pachter,
Snevily and Voxman.

Theorem 2.7. [67] If diam(G) = 2 then π(G) ≤ n+ 1.

Proof. Given any configuration C on G, define Vi to be the set of vertices having i
pebbles, with ni = |Vi|. Then n =

∑

i≥0 ni and |C| =
∑

i≥0 ini. Of course, since
diam(G) = 2 we have ni = 0 for i ≥ 4. Assume that C is r-unsolvable of size n+ 1.
G being diameter two means that nonadjacent vertices have a common neighbor, and

C being r-unsolvable means that r has no big neighbors and that no two big vertices
share a common neighbor with r. Hence the number of empty neighbors of r is at least
n2 + n3; i.e. n0 ≥ 1 + n2 + n3. This implies that n ≥ n1 + 2n2 + 2n3 = |C| − n3, so
that n3 ≥ |C| − n = 1. Let u be a vertex with 3 pebbles.

Now there are at least another n2 + n3 − 1 distinct empty vertices that are common
neighbors of u and other big vertices — otherwise we could move a fourth pebble to u
from another big vertex. Thus n0 ≥ 2n2+2n3, and so n ≥ n1+3n2+3n3 = |C|+n2 > n,
a contradiction. Hence C is r-solvable. �

More generally, Herscovici, et. al, prove the following.

Theorem 2.8. [45] If diam(G) = 2 then πk(G) ≤ n+ 4k − 3.

The history of the term Class 0 comes from Theorem 2.7 — diameter two graphs
come in two classes: π = n or n + 1. In fact, it is possible to characterize which is
which. The pyramid is any graph on 6 vertices isomorphic to the union of the 6-cycle
(r, a, p, c, q, b) and the (inner) triangle (a, b, c). A near-pyramid is a pyramid minus
one of the edges of its inner triangle (a, b, c). A graph G is pyramidal if it contains an
induced (near-) pyramid, having 6-cycle C and inner (near-) triangle K, and can be
drawn in the plane so that

(1) the edges of K are drawn in the interior of the region bounded by C and
(2) every other edge of G can be drawn inside the convex hull of exactly one of the

sets {r, a, b}, {p, a, c}, {q, b, c}, or {a, b, c}.
Note that a pyramidal graph is not Class 0 (see exercises).

Theorem 2.9. [16] If diam(G) = 2 and κ(G) ≥ 2 then G is Class 1 if and only if G
is pyramidal.

The role of connectivity here comes from the fact that no graph with a cut vertex is
Class 0 (see exercises). One can use the same arguments from the proof of Theorem
2.7, but with an r-unsolvable size n configuration, to show that it must have t3 = 2,
which gives rise to the 6-cycle (we also learn that t2 = 0); the inner triangle is forced by
diameter and other V1 vertices can be added carefully as described. Because pyramidal
graphs are not 3-connected, we find the following corollary.

Corollary 2.10. [16] If diam(G) = 2 and κ(G) ≥ 3 then G is Class 0.

This corollary immediately suggests that there may be a strong relationship between
diameter, connectivity, and Class 0. Indeed, Czygrinow, et al., prove this so.

Theorem 2.11. [26] There is a function k(d) ≤ 22d+3 such that if G is a graph with
diam(G) = d and κ(G) ≥ k(d) then G is of Class 0. Moreover, k(d) ≥ 2d/d.
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Figure 9. Examples of Pereyra (left) and Phoenix (right) graphs

Theorem 2.11 has some powerful consequences. First, it verifies Graham’s Conjecture
for dense graphs.

Theorem 2.12. [23] There is a constant c so that if δ(Gi) > cn/ lg n for i ∈ {1, 2}
then G1 G2 is Class 0.

Second, it shows that most Kneser graphs are Class 0. For m ≥ 2t + 1 the Kneser
graph K(m, t) has as vertices all t-subsets of {1, 2, . . . ,m} and edges between every
pair of disjoint sets. For example Kn = K(n, 1) and P = K(5, 2).

Theorem 2.13. [26] For any constant c > 0 there is an integer t0 such that, for t > t0,
s ≥ c(t/ lg2 t)

1/2 and m = 2t+s, we have κ(K(m, t)) ≥ 22d+3, where d = diam(K(m, t));
hence K(m, t) is Class 0.

Third, note that almost all graphs are Class 0. Indeed, choosing from graphs with
edge probability 1/2, the probability that some two vertices have no common neighbor
is at most n2(3/4)n→0, and so almost all graphs have diameter two. Similarly, they
are almost surely 2-connected and have no prescribed structure like being pyramidal
(see exercises). Thus Theorem 2.9 applies. But Theorem 2.11 implies that even very
sparse graphs are almost all Class 0.

Theorem 2.14. [26] Let G ∈ G(n, p) be a random graph on n vertices with edge
probability p and let d = diam(G). If p ≫ (n lg2 n)

1/d/n then Pr[κ(G) ≥ 22d+3]→1 as
n→∞; hence Pr[G is Class 0]→1 as n→∞.

Fourth and finally, it implies the lower bound in the following theorem of Czygrinow
and Hurlbert. Let g0(n) denote the maximum number g such that there exists a Class
0 graph G on at most n vertices with finite gir(G) ≥ g.

Theorem 2.15. [24] For all n ≥ 3 we have

⌊
√

(lg2 n)/2 + 1/4− 1/2⌋ ≤ g0(n) ≤ 1 + 2 lg2 n.

Cycles deliver the upper bound, but the lower bound depends on a result of Bollobas
that guarantees the existence of a graph G of large girth g and large minimum degree
δ on at most (2δ)g vertices, a result of Mader that shows that G has a subgraph of
connectivity at least ⌊δ/4⌋, and then an application of Theorem 2.11.

We turn to a few results involving graphs of diameter 3 or 4. A graph G is a split
graph if its vertices can be partitioned into a clique K and an independent set I of cone
vertices. For n = 2k(+1), the sun Sn is the split graph with perfect matching joining
I = Ik to K = Kk (and one extra leaf when n is odd). A split graph is Pereyra if it
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has a pyramid, none of whose vertices is a cut vertex, and a Pereyra graph is Phoenix
if some corner of its pyramid has a vertex of degree at least 4 at distance 3 from it (see
Figure 9).

The following result of Postle, et al., is the first in pebbling to use discharging-type
techniques. Given a graph G, an r-unsolvable configuration C of size matching the
upper bound, and a breadth-first search spanning tree T , the partition T uniquely into
what they call irreducible branches (subtrees) with pebbling capacity 0, which roughly
means that the parts are the smallest substructures that emit no pebbles towards
r. The charge of a set W of vertices equals

∑

v∈W (C(v) − 3/2), and W is called
superoptimal if it has positive charge and suboptimal otherwise. Note that V (G) has
positive charge so, by averaging, at least one of the branches in the partition must be
superoptimal. They then produce a list of all 12 irreducible superoptimal branches of
capacity 0 — this is the unavoidable set. Discharging arguments traditionally proceed
by showing that in a minimal counterexample the unavoidable set consists of reducible
configurations, which then contradicts minimality. Here, though, without minimality
in use, Postle, et al., find a contradiction by very carefully and technically matching
irreducible superoptimal capacity 0 branches with suboptimal branches that cancel
their charge, giving total nonpositive charge for V (G).

Theorem 2.16. [71] If diam(G) = 3 then π(G) ≤ ⌊3n/2⌋ + 2, which is best possible,
as shown by the sun Sn. If diam(G) = 4 then π(G) ≤ 3n/2 + c, for some constant c.

They use discharging more traditionally, complete with discharging rules, to prove
that if diam(G) = d then π(G) ≤ (2⌊d/2⌋ − 1)n+ 24d + 1.

Alcón, et al., gave the first account of exact pebbling numbers for an infinite family
of diameter 3 graphs.

Theorem 2.17. [1] If G is a diameter 3 split graph then π(G) is given as follows. Let
x be the number of cut vertices of G and, for a vertex r, define δ∗ = δ∗(G, r) to be the
minimum degree of a vertex at maximum distance from r.

(1) If x ≥ 2 then
π(G) = n+ x + 2.

(2) If x = 1 then

π(G) =

{

n+ 5− δ∗ if r is a leaf with ecc(r) = 3 and δ∗ ≤ 4;
n+ 1 otherwise.

(3) If x = 0 then

π(G) =















n+ 4− δ∗ if there is a cone vertex r with deg(r) = 2,
ecc(r) = 3, and δ∗ ≤ 3;

n+ 1 if no such r exists and G is Pereyra;
n otherwise.

Corollary 2.18. [1] If G is a split graph with δ(G) ≥ 3 then G is Class 0.

Of course this implies that 3-connected split graphs are Class 0. We finish this
section with an interesting variation on the Class 0 theme. The kth graph power G(k) of
a graph G is formed from G by adding edges between every pair of vertices of distance
at most k in G. Pachter, et al. [67], define the pebbling exponent eπ(G) of a graph
G to be the minimum k such that G(k) is Class 0. The Distance Bound implies that

eπ(G) ≥ n/2
lgn

. Hurlbert uses the weight function method to prove the following near
tight upper bound for cycles.
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Figure 10. A minimum solvable configuration on the path P8.

Proposition 2.19. [52] For every n ≥ 3 we have

eπ(Cn) ≤
n/2

lg n− lg lg n
.

Exercises.

(1) [15] Let r∗ be a leaf of a longest path in a tree T . Prove that π(T ) = π(T, r∗).
(2) Show that Pn satisfies 2PP.
(3) Show that Qd satisfies 2PP.
(4) Complete the proof of (2.2) in the case that 2d−1 ≤ t1 ≤ 2d − σ1.
(5) Complete the proof of (2.2) in the case that t1 < 2d−1.
(6) Use Theorem 2.6 to prove that P is Class 0.
(7) Prove that κ(G) = 1 implies π(G) > n.
(8) Prove that if G is pyramidal then π(G) > n.
(9) Prove that the function k from Theorem 2.11 satisfies k(d) ≥ 2d/d. (HINT:

Consider a kind of “fattened” path.)
(10) Use Theorem 2.11 to prove Theorem 2.13.
(11) Prove that the probability that a random graph in G(n, 1/2) is pyramidal is less

than n6/23n.
(12) Use Theorem 2.11 to prove Theorem 2.14.
(13) If G is a graph on n vertices with diam(G) = d then eπ(G) ≥ d/ lg n.
(14) Prove that every graph with at least

(

n−1
2

)

+ 2 edges is Class 0. Show that this
bound is best possible.

(15) [8] Prove that every Class 0 graph has at least ⌊3n/2⌋ edges.
(16) (Open) Does every bipartite graph have the 2-pebbling property?
(17) (Open) Is π(L2) = 64?
(18) (Open) Find infinitely many Class 0 graphs with n vertices and at most 3n/2+

o(n) edges.
(19) (Open) Decide if K(m, t) is Class 0 for all m = 2t+ s with s ∈ O((t/ lg2 t)

1/2).
(20) (Open) Find the smallest k(d) such that G is Class 0 for every diameter d graph

G with κ(G) ≥ k(d).

3. Optimal Pebbling

While pebbling can be thought of as a worst-case scenario — we give an adversary
enough pebbles so that we can solve the graph no matter how she arranges them
— optimal pebbling can be considered a best-case scenario — we place few pebbles
carefully so as to solve the graph.

3.1. Basics and Smoothing. The optimal pebbling number π∗(G) is the minimum
number t for which there exists a solvable configuration of size t. For example, the
configuration with 2 pebbles on a single vertex can reach any other vertex of the
complete graph, and so π∗(Kn) = 2 for all n. Figure 10 displays the upper bound of
π∗(P8) ≤ ⌈2(8)/3⌉; in general, it is easy to see that every graph G satisfies π∗(G) ≤
2dom(G), since placing 2 pebbles on each vertex of a minimum dominating set yields
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a solvable configuration. Moreover, call a set of vertices W a distance k dominating
set of G if every vertex v is at distance at most k from some vertex of W , and define
domk(G) to be the minimum size of such a set. Then the following is immediate.

Proposition 3.1. Every graph G satisfies π∗(G) ≤ 2kdomk(G) for every k ≥ 1.

This implies that π∗(G) ≤ 2rad(G) since any center vertex is a distance rad(G) dom-
inating set. Moews [65] uses this Proposition to show that the d-cube has π∗(Qd) ≤
(4/3)dd2. Choosing k = ⌈d/3⌉, he uses a result of Cohen that says that domk(Q

d) ≤
2sdd2, where s = (5/3 − lg 3). Moews also shows that the bound is nearly tight:
π∗(Qd) ≥ (4/3)d. The following argument for this is due to Bunde, et al. [13]. Suppose

that C is solvable. Then Corollary 1.6 holds for every r; that is,
∑d

k=0Ck(r)/2
k ≥ 1,

where Ck(r) denotes the number of pebbles at distance k from r. Now choose r uni-
formly at random. Then E[Ck(r)] = |C|

(

d
k

)

/2d, so that applying linearity of expectation

to Corollary 1.6 yields |C|(3/4)d = |C|(1 + 1/2)d/2d = |D|∑k

(

d
k

)

2−k/2d ≥ 1.
Because the upper bound is generated nonconstructively, there have been attempts

at producing constructive bounds. Pachter, et al. [67] give an O(
√
2
d
) construction by

placing pebbles at a pair of antipodal vertices. Herscovici, et al. [43] give an iterative
contruction that yields an O(cd) bound, where c ≈ 1.3763.

The Subgraph Bound applies to optimal pebbling as well — π∗(G) ≤ π∗(H) when H
is a spanning subgraph of G — and for the same reason: adding edges can’t destroy the
solvability of a configuration. The version of the Distance Bound for optimal pebbling
is π∗(G) ≥ ⌈2(d + 1)/3⌉, where d = diam(G) (see exercises), but the Vertex Bound in
this case is an upper bound. The configuration J (one pebble on each vertex) shows
that π∗(G) ≤ n, but a stronger bound is known.

Theorem 3.2. [13] For all G we have π∗(G) ≤ ⌈2n/3⌉.
Before we can prove this we need to introduce a key technique called smoothing,

sort of the opposite of squishing. Let C be a configuration on G and suppose that
deg(v) = 2 and C(v) ≥ 3. A smoothing move at v removes two pebbles from v and
adds one pebble to each of its neighbors. One can prove (see exercises) that, if C ′ is the
configuration obtained by making a smoothing move from an r-solvable configuration
C, then C ′ is also r-solvable. A smooth configuration has no smoothing move available;
that is, C is smooth if C(v) ≤ 2 whenever v has degree 2.

Lemma 3.3. [Smoothing Lemma] [13] If G has at least 3 vertices then G has a
smooth minimum sized solvable configuration with empty leaves.

Proof. The proof begins by noting that an arbitrary solvable configuration C can be
assumed to have minimum size, at most ⌈2n/3⌉ (and so has an empty vertex), then
showing that only finitely many smoothing moves can be made from C. Indeed, if G
is not a cycle, consider a thread T contained in the unique smallest path Pk having
endpoints of degree greater than 2. For a pebble on T give it the weight d(k−d) when it
has distance d from an endpoint of Pk. Then a smoothing move reduces the sum of the
weights of the two pebbles involved by 2. Since the sum of the weights of the pebbles
on T must remain nonnegative, the thread will be smooth in a finite number of moves.
If G is a cycle then let v be an empty vertex of C and use the same weight argument
as above by considering v as both endpoints of a path. Repeated smoothing moves
will either create a smooth configuration or move pebbles onto v, which decreases the
number of empty vertices. Thus only finitely many smoothing moves are possible.
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Now that C is smooth, we must create empty leaves. When a leaf v has neighbor u
with C(v)+C(u) ≥ 3 pebbles we can move C(v)−1 of them to u and remove the other
to create the contradiction of a smaller solvable configuration. Otherwise we move all
of the pebbles from v to u to achieve the desired result (see exercises). �

The bound in Theorem 3.2 is best possible, as shown by paths and cycles.

Theorem 3.4. [13, 31, 67] For all n ≥ 3 we have π∗(Pn) = π∗(Cn) = ⌈2n/3⌉.
Proof. We prove this for Pn only and leave Cn for the exercises. Because of Proposition
3.1 we only need to prove the lower bound, which we do by induction, assuming that
n ≥ 7 because smaller cases can be shown by hand (see exercises).

Let C be a minimum sized solvable configuration. Since |C| ≤ ⌈2n/3⌉ there must
be at least three empty vertices; let v be one that is not an endpoint of Pn and denote
by PL

n and PR
n the two paths whose union is Pn and intersection is {v}.

The generalization of Corollary 1.6 for 2-fold v-solvability on each of PL
n and PR

n

requires weight at least two, which is impossible since C is smooth. Thus the No-Cycle
Lemma implies that any r-solution from C happens locally on either PL

n or PR
n . By

induction, with PL
n
∼= Pa and PR

n
∼= Pb, we have |C| ≥ ⌈2a/3⌉+ ⌈2b/3⌉ ≥ ⌈2n/3⌉. �

As a step toward proving Theorem 3.2 we show that the bound holds for trees.

Theorem 3.5. [13] If T is a tree then π∗(T ) ≤ ⌈2n/3⌉.
Proof. The inductive proof when n > 3 finds a set W of at least three vertices to remove
so that two well placed pebbles on some vertex of W can reach every other vertex of
W either alone or with the help of the appropriate solution on T ′ = T −W . Let x be
a leaf of a longest path P in T and y be its neighbor. The first three cases to consider
are when deg(y) > 2, when deg(y) = 2 and its other neighbor z has deg(z) = 2, and
when deg(y) = 2, deg(z) > 2, and z has a leaf neighbor w; we leave these cases to the
exercises.

Now let v be a neighbor of z not on P , let u be a leaf neighbor of v, and let
W = {x, y, u}. Write C ′ for a minimum sized solvable configuration on T ′. If C ′ is
2-fold z-solvable then form C from C ′ by adding two pebbles to z. Then C is solvable
because 4 pebbles can reach vertices within distance two. Otherwise we form C from
C ′ by adding two pebbles to y. If C ′ is 2-fold w-solvable then those two pebbles can
be used to solve v. Otherwise the edge {z, w} is not used in any solution and so C ′ is
simultaneously z-solvable and w-solvable, so the two pebbles from y can solve v. �

3.2. Collapsing and Minimum Degree. One might improve on the 2/3 coefficient
in Theorem 3.2 by considering minimum degree δ = δ(G). Let Nk[v] denote the closed
k-neighborhood of a vertex v; i.e. the set of all vertices in G at distance at most k
from v. Denote by nk(G) be the minimum size of Nk[v] over all v. Czygrinow gave an
argument in [13] that dom2k(G) ≤ n/nk(G). In the case k = 1 we have n1(G) = δ + 1,
which, combined with Proposition 3.1 yields the following improvement on Theorem
3.2 when δ ≥ 6.

Theorem 3.6. [13] For all G we have π∗(G) ≤ 4n
δ+1

.

The complete graph Kn shows that there exist graphs with π∗(G) ≥ 2n/(δ+1). Here
δ = n + 1 but, in fact, more examples abound, even with δ ≪ n. For a vertex v in a
graph G we define the t-blow up of G at v to have vertices (V (G)− {v})∪ {v′1, . . . , v′t}
with edges (E(G) − {uv | u ∈ V (G)}) ∪ {uv′i | uv ∈ E(G), 1 ≤ i ≤ t} ∪ {v′iv′j | 1 ≤
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i < j ≤ t}. That is, v is replaced with t clones of it that form a t-clique. Now let the
vertices of C3s be labeled v1, . . . , v3s around the cycle, and define the graph Gs,t to be
formed from C3s by t-blowing up of each of the vertices v3i. It turns out (see exercises)
that π∗(Gs,t) = π∗(C3s) = 2s = 2n/(δ + 1).

The following stronger result is proven in [13].

Theorem 3.7. [13] For all t ≥ 1 there is a graph G with δ = 3t ≤ n − 3 and
π∗(G) ≥ (2.4− 24

5δ+15
− o(1)) n

δ+1
.

The proofs of these results depend on the technique of collapsing, which is a little
bit like the reverse of blowing up but without requiring cliques. In fact, it’s more like
contracting but without requiring the collapsing set to be connected. For W ⊆ V (G),
the operation of collapsing W forms a new graph H in which W is replaced by a single
vertex w that is adjacent to all the neighbors of vertices of W that are in V −W .

Lemma 3.8. [Collapsing Lemma] [13] If H is obtained from G by collapsing sets of
vertices then π∗(G) ≥ π∗(H).

Proof. Let C be a solvable configuration on G and letH be formed from G by collapsing
W to the new vertex w. Define C ′ on H by C ′(w) = C(W ) and C ′(v) = C(v) for all
v 6= w. Now any pebbling step on the edge e in G naturally collapses to a pebbling
step in H by being the same step if e ∈ E(H) and by being a non-step if e 6∈ E(H).
Thus any sequence of pebbling steps that solves some root r ∈ V (G) −W still solves
r ∈ V (H), and that solves some root r ∈ W now solves w. Thus C ′ is solvable on
H. �

Exercises.

(1) Prove that if d = diam(G) then π∗(G) ≥ ⌈2(d+ 1)/3⌉.
(2) [66] Exercise 1 and Proposition 3.1 imply that 2 ≤ π∗(G) ≤ 4 if diam(G) = 2.

Characterize when π∗(G) = 2 and when π∗(G) = 3.
(3) Let C ′ be the configuration obtained by making a smoothing move from an

r-solvable configuration C. Prove that C ′ is also r-solvable.
(4) Complete the proof of Lemma 3.3 by emptying the leaves.
(5) Prove that π∗(Pn) = ⌈2n/3⌉ for n ≤ 6.
(6) Prove that π∗(Cn) = ⌈2n/3⌉ for n ≥ 3.
(7) Prove Theorem 3.5.
(8) Use Theorem 3.5 to prove Theorem 3.2.
(9) Prove that if G has girth 2t+ 1 then π∗(G) ≤ 22t/(1 + δ

∑t
i=1(δ − 1)i).

(10) Use Lemma 3.8 to prove that the graph Gs,t, defined after Theorem 3.6, satisfies
π∗(Gs,t) = 2n/(δ + 1).

(11) Define the Sierpinski graphs Sm as follows (see Figure 11): S1 = K3 with corner
vertices {x, y, z} and, for m > 1, Sm is built from three copies of Sm−1 with
corner vertices {xi, yi, zi} by collapsing the pairs of vertices {y1, x2}, {z2, y3},
and {x3, z1}, creating the new corner vertices {x1, y2, z3}. (For example, S2 is
the pyramid.) Now define the graph Rm by adding three edges between the
corner vertices. Prove that π∗(Rm) ≤ 2(3m−3).

(12) For all 2 ≤ δ < n find graphs G having π∗(G) > 2n/(δ + 1)− 2.
(13) [32, 43] For all graphs G and H we have π∗(G H) ≤ π∗(G)π∗(H).
(14) Find graphs G with maximum degree less than lg n and π∗(G) ≪ n.
(15) (Open) Characterize those graphs G for which π∗(G) = 2dom(G).
(16) (Open) Is there a graph G with π∗(G) ≥ 3n(G)/(δ(G) + 1)?
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Figure 11. The Sierpinski graph S3.

(17) (Open) Does δ(G) ≥ 3 imply that π∗(G) ≤ ⌈n(G)/2⌉?

4. Complexity

Here we discuss questions such as how long it takes to decide if a particular config-
uration C on a graph G is D-solvable, to give an upper bound on π(G, r) for a rooted
graph (G, r), or to calculate π∗(G), for example. Unless otherwise stated, running
times of algorithms will be in terms of n.

4.1. Solvability. We begin by defining D-SOLVABLE (resp., SOLVABLE) to be the
problem of deciding, for a configuration C on a graph G, if C is D-solvable (resp.,
solvable). For example, if G = Pn and r is a leaf, we know that C is r-solvable if and
only if wt(C) ≥ 1, which can be checked in linear time. However, the problem is more
difficult in general, as discovered by Hurlbert and Kierstead [56] (see also [59]). First
we note that r-SOLVABLE ∈ NP.

Theorem 4.1. [59] The configuration C is D-solvable on G if and only if there is a
nonnegative integral solution to the system

(4.1) {C(u) +
∑

v∈V (G)−{u}
(xv,u − 2xu,v) ≥ D(u)}u∈V .

Hence D-SOLVABLE ∈ NP.

Proof. For necessity, let σ be a D-solution from C and define xu,v to be the number
of pebbling steps in σ from u to v. Then, for each u ∈ V , the left hand side of (4.1)
calculates the resulting number of pebbles at u — how many started at u, plus how
many came to u, minus how many left u — which is at least D(u) because σ solves D.

For sufficiency, we begin with a solution to (4.1) that has the smallest sum of all
its variables,

∑

u∈V
∑

v∈V−{u} xu,v, and construct from it a D-solution σ. Create the

directed graph ~G by replacing every edge of G by two arcs in each direction, labeling
each arc uv by the value xu,v, which we think of as the number of pebbling steps of σ
from u to v, and removing all arcs with label 0. Because of the minimum sum condition,
~G has no oriented cycles (see exercises). All that remains is to define σ by listing the
pebbling steps in order so that each configuration along the way is nonnegative, which
we also leave to the exercises. �

Now we will show that D-SOLVABLE (in particular, r-SOLVABLE) is NP-hard. Let
H be a hypergraph with 2t+2 vertices V (H) and edges E(H) = {e1, . . . , ek}. Define
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Figure 12. The pebbling graph GH of a 4-uniform hypergraph H on
2t+2 vertices, with configuration CH indicated.

the pebbling graph G = GH as follows (See Figure 12). The vertices of G are given
by V (G) = V (H) ∪ E(H) ∪ {u1, . . . , uk} ∪ {r, w1, . . . , wt}. The edges of G include
vei ∈ E(G) for every v ∈ ei, as well as the paths wtuiei for every i ≤ k and the path
rw1 · · ·wt.

Theorem 4.2. [56] Let H be a 4-uniform hypergraph on 2t+2 vertices with pebbling
graph G = GH. Define the configuration C = CH on G by C(v) = 2 for all v ∈ V (H)
and C(v) = 0 otherwise. Then C is r-solvable if and only if H has a perfect matching.
Hence r-SOLVABLE is NP-complete.

Proof. The first thing to notice is that wt(C) = 1, which means that every r-solution
is greedy. This means that there will never be more than 2 pebbles on any vertex in
V (H), and so there will never be more than 4 pebbles on any vertex ei. Thus each
ei can contribute at most one pebble to wt, and will contribute one if and only if it
receives one pebble from each of the four vertices of V (H) that it contains as an edge
of H. Since each vertex in V (H) can contribute a pebble to at most one ei, those ei
that do contribute a pebble to wt form a matching in H. Now, solving r requires that
2t pebbles reach wt, which happens if and only if the matching is perfect. �

Milans and Clark [59] also achieve this result via reduction from canonical 3SAT(which
we write 3SATC), in which each formula Φ considered has at least 2 clauses, with either
2 or 3 variables per clause, and each variable appearing exactly once in its negative
form and either once or twice in its positive form. They build a pebbling graph G = GΦ

with configuration C = CΦ and root r (see Figure 13) so that C is r-solvable on G if
and only if Φ is satisfiable. We define G by starting with the path vx1vxvx2 for each
variable x in Φ, with pebbles C(vx1 , vx, vx2) = (2, 0, 2). The vertex vxi represents the
ith occurrence of x in Φ, while vx represents the occurrence of x in Φ. For every OR

(resp. AND) in Φ we add a representative vertex adjacent to each of the variables or
clauses it disjoins (resp. conjoins) and place 1 (resp. 0) pebbles on it. After the final
AND vertex has been placed we add the root vertex r adjacent to it.
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Figure 13. A pebbling graph GΦ with configuration CΦ for Φ = (w ∨
x) ∧ (w ∨ x) ∧ (w ∨ y ∨ z) ∧ (x ∨ y ∨ z).

As with most NP-complete problems, one looks for classes of graphs over which
the problem is polynomial. Of course, on trees r-SOLVABLE is linear: make greedy
steps along the edges farthest from r until you either reach r or not. The hypergraph
construction above shows that bipartite graphs are not such a class, even when maxC =
2 (and [59] further restrict the graphs to ∆ = 3). Diameter two graphs are a natural
class to consider, but Cusack, et al., found that they are no easier to work with,
reducing r-SOLVABLE in this instance from 3SATC as well.

Theorem 4.3. [21] When restricted to the class of diameter two graphs, r-SOLVABLE

remains NP-complete.

Of course, if |C| > π(G, r) then we know C is r-solvable, so it is the small config-
urations that pose the challenge. Bekmetjev and Cusack [4] show, however, that the
situation improves if we again consider connectivity: the problem is polynomial over
diameter two graphs of fixed connectivity. On the other hand, even if we know that
a configuration solves r, it may still be difficult to find an r-solution. In this case,
diameter two graphs are more friendly, even for k-fold solutions.

Theorem 4.4. [45] If diam(G) = 2, |E(G)| = m, and |C| ≥ π(G, r) + 4k − 4 then a
k-fold r-solution can be found from C in at most 6n+min{3k,m} steps.

A much more complicated reduction yields a negative result for planar graphs as
well.

Theorem 4.5. [20] When restricted to the class of planar graphs, r-SOLVABLE remains
NP-complete.

However, Cusack et al. show the following surprising positive result.

Theorem 4.6. [20] When restricted to the class of diameter two planar graphs we have
SOLVABLE ∈ P.

Their proof relies on a result of [4] that states that if a configuration C has b big
vertices then the solvability of C can be determined in O(b!n2b−1m) time. For b ≤ 3
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Figure 14. The unique diameter two graph with domination number 3.

they use this algorithm, and they show that if b ≥ 4 then C is solvable. The proof of
this statement is arranged according to the value of dom(G). A theorem of Goddard
and Henning [38] states that dom(G) ≤ 3, with equality if and only if G is the graph in
Figure 14. It is easy to see that placing two pebbles on each of any four vertices of this
graph will solve any root. We leave it to the exercises that doing the same on a planar
graph of domination number 1 or 2 will have the same effect. Only the dom(G) = 2
case uses planarity, as a subdivision of K3,3 comes into play.

4.2. Pebbling and Optimal Pebbling Numbers. We define PEBBLINGNUMBER

to be the problem of calculating π(G). As an example of the interesting phenomenon
at play here, we can calculate the pebbling number of a diameter two graph quickly
without being able to decide quickly if a configuration is solvable.

Theorem 4.7. [45] Calculating π(G) when G is a diameter two graph can be done in
O(n4) time.

The algorithm for this result relies on the pyramidal characterization of Theorem
2.9 and improves on the earlier O(n3m) algorithm of [4].

Next we define the related UPPERBOUND to be the problem of deciding, for given
k and configuration D on a graph G, if π(G,D) ≤ k. Denote by ΠP

2 the class of
decision problems computable in polynomial time by a coNP machine equipped with
an NP-complete oracle.

Theorem 4.8. [59] UPPERBOUND is ΠP

2 -complete.

We leave that UPPERBOUND ∈ ΠP

2 to the exercises. To show that UPPERBOUND is
ΠP

2 -hard, Milans and Clark reduce from ∀∃3SATC. This is the natural class to consider
because proving that π(G) ≤ k requires one to show for all r that every configuration
of size at least k has an r-solution. As a consequence of this theorem, UPPERBOUND is
both NP-hard and coNP-hard, which implies that it is in neither NP nor coNP unless
NP=coNP.

Finally, we return to consider graph classes over which PEBBLINGNUMBER is polyno-
mial. Alcón et al. [1] show that calculating π(G, r) when G is a split graph can be
done in linear time, based on the fact that recognizing whether or not G is r-Pereyra
can be done in linear time. Indeed, G r-Pereyra requires r to be a degree 2 cone ver-
tex. Now let X be the set of cut vertices of G, W be the set of degree 2 vertices of
G whose neighbors are in G − X, and define the graph H = H(G) to have vertices
∪v∈WN(v), where N(v) is the set of neighbors of v in G, and edges {N(v)}v∈W . Then
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G is r-Pereyra if and only if H has a triangle including the edge N(r). It is not hard to
see that this whole process is linear (see exercises). Then one uses the following three
lemmas to show that calculating π(G, r) can be done in linear time. The lemmas are
proved in [1] and are among those used to prove Theorem 2.17. The function t(G, r)
is complicated to write down briefly, but is easily calculated from knowing the degrees
and number of cut vertices of G.

Lemma 4.9. If G is a split graph and r ∈ K then π(G, r) = n + xr, where xr is the
number of cut vertices different from r.

Lemma 4.10. If G is a split graph and r is a cone vertex with ecc(r) = 2, then
π(G, r) = n + x + ψ, where x is the number of cut vertices and ψ = ψ(G, r) is 1 if G
is r-Pereyra and 0 otherwise.

Lemma 4.11. If G is a split graph and r is a cone vertex with ecc(r) = 3, then
π(G, r) = t(G, r) + φ(G, r), where φ(G, r) = 1 if G is r-Phoenix and 0 otherwise.

Now, calculating π(G) and π(G, r) are polynomially equivalent, but it may be pos-
sible to calculate π(G) faster than by calculating π(G, r) for every r. In fact, for split
graphs the naïve algorithm would be quadratic, but the following result does better.

Theorem 4.12. [1] Calculating π(G) when G is a split graph can be done in O(nβ)
time, where ω ∼= 2.37 is the exponent of matrix multiplication and β = 2ω/(ω + 1) ∼=
1.41.

Obviously the proof uses Theorem 2.17. The crucial time saving piece in the proof
of Theorem 4.12 comes from showing that recognizing if G is Pereyra can be done in
O(nβ) time, as G is Pereyra if and only if H(G) contains a triangle, which can be
decided in that time by using an algorithm of Alon, Yuster, and Zwick. The only other
nontrivial part comes when x = 0, in which case there is a linear algorithm that either
finds a degree 2 cone vertex r having some degree at most 3 vertex at distance 3 from
it or concludes that none exist. We leave this algorithm to the exercises.

Finally we define OPTIMALPEBBLINGNUMBER to be the problem of deciding if
π∗(G) ≤ k, and we present, without proof, the one result in this area.

Theorem 4.13. [59] The problem OPTIMALPEBBLINGNUMBER is NP-complete.

Exercises.

(1) Prove that SOLVABLE is linear on trees.
(2) Convert Chung’s proof of π(Qd) = n to a linear algorithm that solves configu-

rations of size at least n.
(3) Show that the digraph ~G in the proof of Theorem 4.1 is acyclic.
(4) Finish the proof of Theorem 4.1 by ordering the steps of σ.
(5) Prove that a 3SATC formula Φ is satisfiable if and only if CΦ is r-solvable on

GΦ.
(6) Let G be a diameter two planar graph with dom(G) ≤ 2. Suppose C has at

least 4 vertices with at least 2 pebbles each. Show that C is solvable.
(7) Prove that UPPERBOUND ∈ ΠP

2 .
(8) Devise a linear algorithm to construct a maximum path partition of a tree.
(9) Show that the algorithm outlined for recognizing if G is r-Pereyra is linear.

(10) Prove the lower bound π(G, r) ≥ n+ xr from Lemma 4.9.
(11) Use the Weight Function Lemma 1.8 to prove the upper bound π(G, r) ≤ n+xr

from Lemma 4.9.
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(12) Prove the lower bound π(G, r) ≥ n+ x + ψ from Lemma 4.10.
(13) Show that calculating π(G, r) can be done in linear time.
(14) Devise an linear algorithm that handles the case x = 0 in the proof of Theorem

4.12.
(15) Show that OPTIMALPEBBLINGNUMBER ∈ NP.
(16) (Open) Is PEBBLINGNUMBER ∈ P when restricted to interval graphs of fixed

diameter?
(17) (Open) Is r-SOLVABLE ∈ P when restricted to the class of cubes?
(18) (Open) Is r-SOLVABLE ∈ P when restricted to the class of split graphs?
(19) (Open) Is it possible to decide in polynomial time if a fixed diameter chordal

graph is Class 0?
(20) (Open) Find classes of graphs over which OPTIMALPEBBLINGNUMBER ∈ P.

5. Thresholds

The probabilistic model of pebbling studies the typical case; that is, small configura-
tions are usually unsolvable and large configurations are usually solvable — at roughly
how many pebbles is the transition? In other words, instead of randomizing the graph,
as in Theorem 2.14, we randomize the configuration.

We assume that all sequences G = (G1, . . . , Gk, . . .) = (Gk)k≥1 of graphs considered
have an increasing number of vertices n = nk = n(Gk). The sequences of complete
graphs, stars, paths, cycles, and cubes are denoted K, S, P , C, and Q, respectively.
The sequence of graph products is written G H = (Gk Hk)k≥1, with G2 = G G. For
sets of functions A and B on the integers we write A . B to mean that a ∈ O(b) for
every a ∈ A, b ∈ B.

Let Ck : [n]→N denote a configuration on V (Gk) and, for a function h : N→N and
fixed n = nk, define the uniform probability space Xn,h of all configurations Ck of size
h = h(n). Define the probability P

+
n = Pr[Ck is solvable on Gk] and let t : N→N be

any function. We say that t is a pebbling threshold for G, and write τ(G) = Θ(t), if
P

+
n→0 whenever h(n) ≪ t(n) and P

+
n→1 whenever h(n) ≫ t(n). For example, the

solvability of small configurations on Kk is equivalent to the labelled version of Feller’s
Birthday Problem (as well as to hashing collisions in computer science); that is, if
|Ck| < k then Ck is solvable if and only if some vertex is big. Thus τ(K) = Θ(

√
n).

For notational convenience we will assume that functions like logarithms and square
roots take on their nearest integer values.

5.1. Existence. A priori there is no reason that P
+
n must tend to either 0 or 1 for

every h. In other contexts, probabilities of statements holding true can tend to other
constants. For example, Winkler [77] proved that, in a random 2-dimensional poset,
the probability that some pair of maximal and minimal elements are incomparable
tends to 3/4. However, Bekmetjev et al. show that the 0-1 law does hold for graph
pebbling.

Theorem 5.1. [3] Every graph sequence G has nonempty threshold τ(G).
For the moment we will assume this so that we don’t complicate the statements of

some preliminary results. As in the Subgraph Bound, because the r-solvability of a
configuration is not destroyed by adding edges, we have the following threshold result.

Lemma 5.2. [22] [Subgraph Lemma] If Hk is a spanning subgraph of Gk for all k
then τ(G) . τ(H).
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This is what places every threshold in the range τ(K) . τ(G) . τ(P) (see exer-
cises). For some time it was wondered if thresholds were monotone with respect to
pebbling numbers; that is, if π(Gk) ≤ π(Hk) for all k implied τ(cG) . τ(H). But
counterexamples of Björklund and Holmgren [7] disproved this (see exercises).

We now sketch a proof of Theorem 5.1. In many ways the proof mimics that of
the result of Bollobás and Thomason [10] that monotone graph properties (such as
containing triangles or having no hamilton cycle) have random graph thresholds —
their result actually holds more generally for monotone families of subsets — and in
other ways a new approach was needed.

Proof of Theorem 5.1. Note that a configuration of size t is simply a t-multiset of
n vertices, the number of which we denote by

〈

n
t

〉

=
(

n+t−1
t

)

. We write Mn for the
set of all multisets of [n] and Mn(t) for those of size t. A family Fn ⊆ Mn (with
Fn(t) = Fn ∩ Mn(t)) is increasing (resp. decreasing) if E ⊇ F ∈ Fn (resp. E ⊆ F ∈
Fn) implies E ∈ Fn. Notice that the family of all solvable configurations of a graph is
increasing. A randomly chosen element of Mn(t) has probability Pt(Fn) = |Fn(t)|/

〈

n
t

〉

of being in Fn. We define t∗ = t∗(n) = min{h | Ph(Fn) ≥ 1/2} and show that
t∗ ∈ τ(F ), where F = (Fn)n≥1.

A crucial tool is the following result of Clements and Lindström, extending an earlier
result of Macauley, which is the multiset analog of of the celebrated Kruskal-Katona
Theorem for the subset lattice. Given any subfamily A ⊆ Mn(t), we define its shadow
∂A = {B ∈ Mn(t− 1) | B ⊆ A for some A ∈ A }, with the repeated shadow operator
defined by ∂k+1 = ∂∂k. For a multiset A ∈ Mn(t) and i ∈ [n] let A(i) denote the
multiplicity of i in A. The colexicographic (colex) order on Mn(t) is defined by setting
A < B if A 6= B and, for some i ∈ [n], A(i) < B(i) while A(j) = B(j) for j > i.

Proposition 5.3. [17] If F ⊆ Mn(t) and G consists of the first |F | elements of Mn(t)
in the colex order then |∂kF | ≥ |∂kG | for all k ≥ 1.

In 1979 Lovász proved a continuous version of the Kruskal-Katona Theorem which
was used by Bollobás and Thomason to prove their result. The next big tool is the
following analogous continuous version of Clements-Lindström. For a nonnegative real
number x let

〈

x
t

〉

= (x)(x− 1) · · · (x− t+ 1)/t!.

Proposition 5.4. [3] Suppose that A ∈ Mn(t) and define x by |A | =
〈

x
t

〉

. Then

|∂A | ≥
〈

x
t−1

〉

.

Here is where the proof detours slightly from the Bollobás-Thomason approach.
Compared to the levels of the subset lattice, |Mn(t)| grows too fast for the relevant
probabilities to tend to 0 quickly enough with these shadow estimates. So instead
two special reference families are needed: (1) M b

n(t) = {A ∈ Mn(t) | A(n) < b}
(1 ≤ b ≤ n), and (2) N b

n (t) = {A ∈ Mn(t) | A(n − b + 1) = · · · = A(n) = 0}
(1 ≤ b ≤ n − 1). Note that each of these families is some initial segment of colex on
Mn(t). Also, ∂kM b

n(t) = M b
n(t− k) and ∂kN b

n (t) = N b
n (t− k) for all k ≥ 1.

We start with an increasing family Fn and define Fn = Mn − Fn. The idea is to
compare Fn(t) with the appropriate reference family at or near level t∗ in order to show
that Pt(Fn) tends to 0 or 1 as needed. We use the estimates in Exercises 6 and 7 in
the following four cases and leave the details to the exercises. Take any ω = ω(n)→∞.

(1) Let t = t∗/ω and show that Pt(Fn)→1.
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(a) If t∗ ≥ 2n − 1 then set b = t∗/(2n − 1). Then Pt∗−1(M
b
n) < Pt∗−1(Fn)

and Pt(Fn) ≥ 1 − (t/(n + t − 1))b. If n − 1 ≥ t∗/
√
ω this is at least

1− 1/(
√
ω + 1); otherwise it is at least 1− e−

√
ω/10.

(b) If t∗ ≤ 2n − 2 then set b = (n + t∗ − 2)/(t∗ − 1). Then Pt∗−1(N
b

n ) <
Pt∗−1(Fn) and Pt(Fn) ≥ e−tb/ω(n−b) ≥ e−6/ω.

(2) Now let t = ωt∗ and show that Pt(Fn)→0.
(a) If t∗ ≥ n/2 then set b = (n + t − 1)/(n − 1). Then Pt∗(M

b
n) ≥ Pt∗(Fn)

and Pt(Fn) ≤ 1− e−8/ω.
(b) If t∗ ≤ (n − 1)/2 then set b = n/(2t∗ + 1). Then Pt∗(N

b
n ) ≥ Pt∗(Fn)

and Pt(Fn) ≤ ((n − 1)/(n + t − 1))b. If n − 1 ≤ t∗/
√
ω this is at most

1/(1 +
√
ω); otherwise it is at least e−

√
ω/12.

�

5.2. Calculations. The most basic techniques for calculation bounds for thresholds
involve packing and covering the vertices of a graph by its subgraphs, most often by
balls: fixed radius neighborhoods of vertices. An upper bound comes from showing
that, for most large configurations, every ball will have enough pebbles in it to be
solved locally. A lower bound comes from showing that, for most small configurations,
some ball will be empty and (by using weight functions) not enough pebbles can amass
at its boundary to reach its center. It helps to be able to cap the number of pebbles at
each vertex in order for the argument to be successful. Usually different radius balls
are required for these arguments. We begin with the following general upper bound.

Proposition 5.5. [22] For all ǫ > 0, every graph sequence G satisfies τ(G) ⊆ O(n1+ǫ).

Proof. We use the fact that any graph H on l vertices with spanning tree T has π(H) ≤
π(T ) ≤ π(Pl) < 2l. Let c, δ > 0, t = cn1+ǫ, l = (1 + δ)/ǫ, and s = 2l. Let G = Gk

be a graph on n = nk vertices with randomly chosen configuration C = Ck of size
t. For each vertex v choose a connected l-vertex subgraph H(v) of G containing v.
Denote by Ev the event that C(H(v)) < s. The result will follow from showing that
Pr[∃v Ev]→0.

Pr[∃v Ev] ≤ n

s−1
∑

i=0

Pr[C(H(v)) = i]

= n
s−1
∑

i=0

〈

l

i

〉〈

n− l

t− i

〉

/

〈

n

t

〉

≤ n
〈

n
t

〉

s−1
∑

i=0

〈

l

i

〉〈

n− l

t

〉(

t

n− l + t− 1

)i

≤ n
(n

t

)l
s−1
∑

i=0

〈

l

i

〉(

t

n− l + t− 1

)i

≤ n(c′n−ǫl)
s−1
∑

i=0

〈

l

i

〉

≤ c′′n−δ → 0.

�



26 GLENN HURLBERT

For tighter results we will need the following elementary inequalities.

Markov’s Inequality. If X is any nonnegative random variable and a > 0, then
Pr[X ≥ a] ≤ E[X]/a.

The use of Markov’s Inequality is often referred to as the first moment method. For
many of our purposes X will take on integer values, so that Pr[X > 0] = Pr[X ≥ 1] ≤
E[X]. From this it follows that if E[X]→0 then Pr[X = 0]→1.

Chebyshev’s Inequality. If X is any nonnegative random variable and a > 0, then
Pr[|X − E[X]| ≥ a] ≤ Var[X]/a2.

The use of Chebyshev’s Inequality is often referred to as the second moment method.
Typically it is used to show that Pr[X = 0] ≤ Pr[|X−E[X]| ≥ E[X]] ≤ Var[X]/E[X]2.
From this it follows that if E[X]→∞ and Var[X] ∈ o(E[X]2) then Pr[X > 0]→1.

A relatively simple lower bound for paths is given by the following.

Theorem 5.6. [22] The threshold for the sequence of paths satisfies τ(P) ⊆ Ω(n).

Proof. Let t = n/ω for some ω→∞ and let C = Cn be a random configuration of
size t on Pn. We know from Theorem 1.7 that C is r-solvable for the leaf r if and
only if wt(C) ≥ 1. Now, every vertex v has E[C(v)] = t/n = 1/ω→0, so E[wt(C)] =
E[C(v)]

∑

i 2
−i < 2/ω→0. Thus Pr[wt(C) ≥ 1]→0 by Markov’s Inequality, completing

the proof. �

In a series of papers [22, 3, 37, 25], efforts were made to pin down τ(P), the results
of which are given below. Because the constant c is in the exponent, there is still a
wide gap between the lower and upper bounds.

Theorem 5.7. [37, 25] For every constant c > 1, we have τ(P) ⊆ Ω
(

n2
√
lgn/c

)

∩

O
(

n2c
√
lgn

)

.

Obtaining the upper bound with c = 2 was accomplished in [3] by using the same
technique as that which proved Proposition 5.5, by partitioning Pn into paths of length√
lg n (see exercises). Dropping c near 1 requires much more finesse. Obtaining the

lower bound with any c >
√
2 was also done in [3], with an argument we now present.

Let u =
√
lg n/c, t = n2u, and p = (1 + ǫ)2ulg n for some ǫ > 0. Let C be a random

configuration of size t and denote by Fv be the event that C(v) > p. The following
claim caps maxC; we leave its proof as an exercise.

Claim 5.1. With u, t, ǫ, and p as above we have Pr[∃v Fv]→0.

Now partition Pn into q paths Qi of length l =
√
2lg n, and denote by Ei the event

that Qi is empty.

Claim 5.2. With u, t, q, and l as above we have Pr[∃i Ei]→1.

Proof. Write s = 2u so that t = ns and note that n ≫ lslel/s. Let Xi be the indicator
variable of Ei (Xi = 1 if Qi is empty, and 0 otherwise), and set X =

∑q
i=1Xi. Then
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E[X] = qE[Xi] = qPr[C(Qi) = 0] = (n
l
)
〈

n−l
t

〉

/
〈

n
t

〉

, so

E[X] ≥
(n

l

)

(

n− l

t+ n− l

)l

=
(n

l

)

(

t

n− l
+ 1

)−l

∼
( n

lsl

)

(1 + l/n+ 1/s)−l

∼ ne−l2/n

lslel/s
→ ∞,

and the second moment method applies. Now we compute

Var[X] = E[X2]− E[X]2

=
∑

i,j

E[XiXj]−
∑

i,j

E[Xi]E[Xj ]

≤
∑

i

E[X2
i ]

=
∑

i

E[Xi]

= E[X] ≪ E[X]2.

We leave explaining the middle inequality to the exercises. ⋄
Let Q be an empty path almost guaranteed by Claim 5.2. Because Claim 5.1 almost

guarantees that each vertex has at most p pebbles, the weight of C to the left of the
left endpoint of Q is at most p

∑

i 2
i < p < 2l/2 for large enough n, which is not enough

to reach the center of Q. The same can be said for the pebbles to the right of Q, which
finishes the proof for the case that c >

√
2.

When c is closer to 1 we cannot expect to find such large empty subpaths so, in their
proof of the lower bound in Theorem 5.7, Czygrinow and Hurlbert replace emptiness
by a bowl-shaped configuration that has an empty middle and increasing blocks as the
distance from the middle increases. The rate of increase in relation to the size of the
blocks is controlled in such a way that one can still use weight arguments to ensure
that such bowl-shaped configurations (and the pebbles outside of them) cannot solve
their center vertex. Then they prove that configurations bounded by such bowls almost
surely exist.

As complete graphs and paths are at the opposite ends of the threshold spectrum,
it seems reasonable to try to combine the two in order to build graph sequences of
any threshold in between. Czygrinow and Hurlbert [25] achieved this up to Θ(n), but
the region above that remains open (see exercises). For k ≥ 1 and l = l(n) define the
k-legged l-spider Sk

n,l by Kn−kl with an endpoint of each of k copies of Pl adjacent to

k distinct vertices of the clique, and let Sk
l = (Sk

n,l)n≥1. They prove that the sequence

S1
l with the appropriate value of l yields the following result.

Theorem 5.8. [25] Let t1 and t2 be functions satisfying τ(K) . t1 ≪ t2 . Θ(n). Then
there is some graph sequence G such that t1 . τ(G) . t2.

One line of research that parallels Class 0 questions is the search for graph sequences
that have minimum threshold. An example is any sequence of graphs of high minimum
degree.
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Theorem 5.9. [23] For δ = δ(n) let Gδ denote any sequence of graphs having minimum
degree δ. If n1/2 ≪ δ = δ(n) ≤ n − 1 then τ(Gδ) ⊆ O(n3/2/δ). In particular, if in
addition δ ∈ Ω(n) then τ(Gδ) = Θ(n1/2).

The proof first constructs a partition of the vertices into O(n/δ) stars of size at least
δ + 1, along with an extra set of vertices that are each adjacent to some star. Second,
they use the second moment method to prove that every star has at least 8 big vertices,
from which we can place at least 4 pebbles on every star center, and then solve any
vertex because the star centers form a distance 2 dominating set.

Another example is the sequence of squares of complete graphs.

Theorem 5.10. [5] The sequence of squares of cliques has threshold τ(K2) = Θ(
√
n).

This example leads to a second line of research that parallels Graham’s Conjecture
2.2. In order to state an analogous conjecture for thresholds one needs to rescale
threshold functions of products of graph sequences in terms of the new number of
vertices n(Gk Hk) = n(Gk) n(Hk); for example, in Fact 5.10 we have

√
n2 =

√
n
2
.

Products of paths are another instance of evidence for making such a conjecture.

Theorem 5.11. [24] Suppose that t ∈ τ(P) and t2 ∈ τ(P2). Then t2(n) ∈ O
(

t (
√
n)

2
)

.

They actually show the more general result that if Pd = (P d
n)n and td ∈ τ(Pd)

then td(n) ∈ O(τ(n1/d)d). Evidence for a potential counterexample to such a product
conjecture may come from the sequence of cubes, for which only the bounds below are
known.

Theorem 5.12. [2, 27] For all ǫ > 0 the sequence of cubes has threshold τ(Q) ⊆
Ω(n1−ǫ) ∩O(n/(lg lg n)1−ǫ).

We compare these results by defining, for l = l(n) and d = d(n), the graph sequence

Pd
l = (P

d(n)
l(n) )n≥1, where P d

l = (Pl)
d. Note that Pd

n = Pd, Pn
2 = Q (which we write P2),

and τ(P2) ≪ n ≪ τ(Pd) for fixed d. In [24] we find the reasonable conjecture that
τ(Pl) ∈ o(n) for fixed l.

Exercises.

(1) Prove that τ(K) = Θ(
√
n).

(2) Let S = {Sn} be the sequence of stars. Prove that τ(S) = Θ(
√
n).

(3) Prove that any sequence T of trees has τ(T ) . τ(P).
(4) Prove that any sequence G of Class 0 graphs has τ(G) ⊆ O(n).
(5) Prove that any sequence Gd of diameter d graphs has τ(Gd) ⊆ O(n).
(6) Prove for all 1 ≤ b ≤ t that 1 − e−b(n−1)/(n+t−1) ≤ Pt(Mn(t, b)) ≤ 1 −

e−b(n−1)/(t−b+1).
(7) Prove for all 1 ≤ b ≤ n− 1 that e−tb/(n−b) ≤ Pt(Nn(t, b)) ≤ e−tb/(n+t−1).
(8) Complete the proof of Theorem 5.1 by filling in the details of the calculations

in the final four cases.
(9) Prove Claim 5.1.

(10) Explain the middle inequality of the variance calculation in the proof of Claim
5.2.

(11) Let ǫ = ǫ(n) > 1/2 be any function such that nǫ ≪ n, and set l = (2ǫ− 1)lg n.
Prove that τ(S1

l ) = Θ(nǫ).
(12) Find the appropriate value of l for G = S1

l that yields Theorem 5.8.
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(13) [7] Let a = lg n and b = 1
2
lg n + 1000 and prove that π(S1

n,a) < π(S2
n,b) and

τ(S1
a) < τ(S2

b ).

(14) Prove that τ(P) ⊆ O
(

n22
√
lgn

)

.

(15) Prove Theorem 5.9.
(16) (Open) Determine τ(P).
(17) (Open) Determine τ(Q).
(18) (Open) Is it possible to extend Fact 5.8 to the range Ω(n) ∩ τ(P)?
(19) (Open) Suppose that G is any graph sequence, t ∈ τ(G) and t′ ∈ τ(G2). Is it

true that t′(n) ∈ O
(

t (
√
n)

2
)

?

(20) (Open) Is it true that τ(Pl) ⊆ o(n) for fixed l?
(21) (Open) Is there some d = d(n)→∞ such that τ(Pd) = Θ(n)?

References

[1] L. Alcón, M. Gutierrez and G. Hurlbert, Pebbling in split graphs, preprint (2012).
[2] N. Alon, personal communication (2003).
[3] A. Bekmetjev, G. Brightwell, A. Czygrinow and G. Hurlbert, Thresholds for families of multi-

sets, with an application to graph pebbling, Discrete Math. 269, 21–34 (2003).
[4] A. Bekmetjev and C. Cusack, Pebbling algorithms in diameter two graphs, SIAM J. Discrete

Math. 23, 634–646 (2009).
[5] A. Bekmetjev and G. Hurlbert, The pebbling threshold of the square of cliques, Discrete Math.

308, 4306–4314 (2008).
[6] C. Belford and N. Sieben, Rubbling and optimal rubbling of graphs, Discrete Math. 309, 3436–

3446 (2009).
[7] J. Björklund and C. Holmgren, Counterexamples to a monotonicity conjecture for the threshold

pebbling number, Discrete Math. 312, 2401–2405 (2012).
[8] A. Blasiak, A. Czygrinow, A. Fu, D. Herscovici, G. Hurlbert and J. R. Schmitt, Sparse graphs

with small pebbling number, preprint (2012).
[9] A. Blasiak and J. Schmitt, Degree sum conditions in graph pebbling, Austral. J. Combin. 42,

83–90 (2008).
[10] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7, 35–38 (1987).
[11] J. Boyle, Thresholds for random distributions on graph sequences with applications to pebbling,

Discrete Math. 259, 59–69 (2002).
[12] B. Bukh, Maximum pebbling number of graphs of diameter three, J. Graph Th. 52, 353–357

(2006).
[13] D. Bunde, E. Chambers, D. Cranston, K. Milans and D. West, Pebbling and optimally pebbling

in graphs, J. Graph Theory 57, 215–238 (2008).
[14] M. Chan and A. Godbole, Improved pebbling bounds, Discrete Math. 308, 2301–2306 (2003).
[15] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2, 467–472 (1989).
[16] T. Clarke, R. Hochberg and G. Hurlbert, Pebbling in diameter two graphs and products of

paths, J. Graph Th. 25, 119–128 (1997).
[17] G. F. Clements and B. Lindström, A generalization of a combinatorial theorem of Macauley,

J. Combin. Th. 7, 230–238 (1969).
[18] B. Crull, T. Cundif, P. Feltman, G. Hurlbert, L. Pudwell, Z. Szaniszlo and Z. Tuza, The cover

pebbling number of graphs, Discrete Math. 296, 15–23 (2005).
[19] D. Curtis, T. Hines, G. Hurlbert and T. Moyer, Pebbling graphs by their blocks, Integers: Elec.

J. Combin. Number Theory 9:#G02, 411–422 (2009).
[20] C. Cusack, L. Dion and T. Lewis, The complexity of pebbling reachability in planar graphs,

preprint (2012).
[21] C. Cusack, T. Lewis, D. Simpson and S. Taggart, The complexity of pebbling in diameter two

graphs, SIAM J. Discrete Math. 26, 919–928 (2012).
[22] A. Czygrinow, N. Eaton, G. Hurlbert and P. M. Kayll, On pebbling threshold functions for

graph sequences, Discrete Math. 247, 93–105 (2002).



30 GLENN HURLBERT

[23] A. Czygrinow and G. Hurlbert, Pebbling in dense graphs, Austral. J. Combin. 29, 201–208
(2003).

[24] A. Czygrinow and G. Hurlbert, Girth, pebbling and grid thresholds, SIAM J. Discrete Math.
20, 1–10 (2006).

[25] A. Czygrinow and G. Hurlbert, On the pebbling threshold of paths and the pebbling threshold
spectrum, Discrete Math. 308, 3297–3307 (2008).

[26] A. Czygrinow, G. Hurlbert, H. Kierstead and W. T. Trotter, A note on graph pebbling, Graphs
and Combin. 18, 219–225 (2002).

[27] A. Czygrinow and M. Wagner, unpublished (2003).
[28] S. Elledge and G. Hurlbert, An application of graph pebbling to zero-sum sequences in abelian

groups, Integers: Elec. J. Combin. Number Theory 5(1):#A17, 10pp. (2005).
[29] R. Feng and J. Y. Kim, Graham’s pebbling conjecture on product of complete bipartite graphs,

Sci. China Ser. A 44, 817–822 (2001).
[30] J. A. Foster and H. S. Snevily, The 2-pebbling property and a conjecture of Graham’s, it Graphs

and Combin. 16 (2000), 231–244.
[31] T. Friedman and C. Wyels, Optimal pebbling of paths and cycles, arXiv:math/0506076, 2005.
[32] H. L. Fu and C. L. Shiue, The optimal pebbling number of the complete m-ary tree, Discrete

Math. 222, 89–100 (2000).
[33] H. L. Fu and C. L. Shiue, The optimal pebbling number of the caterpillar, Taiwanese J. Math.

13(2A), 419–429 (2009).
[34] Z. Gao and J. Yin, The 2-pebbling property of bipartite graphs, preprint (2012).
[35] J. Gardner, A. Godbole, A. Teguia, A. Vuong, N. Watson and C. Yerger, Domination cover

pebbling: graph families, J. Combin. Math. Combin. Comput. 64, 255–271 (2008).
[36] J. Gilbert, T. Lengauer and R. Tarjan, The pebbling problem is complete in polynomial space,

SIAM J. Comput. 9, 513–525 (1980).
[37] A. Godbole, M. Jablonski, J. Salzman and A. Wierman, An improved upper bound for the

pebbling threshold of the n-path, Discrete Math. 275, 367–373 (2004).
[38] W. Goddard and M. Henning, Domination in planar graphs with small diameter, J. Graph

Theory 40, 1–25 (2002).
[39] Y. Gurevich and S. Shelah, On finite rigid structures, J. Symbolic Logic 61, 549–562 (1996).
[40] D. Herscovici, Graham’s pebbling conjecture on products of cycles, J. Graph Theory 42, 141–154

(2003).
[41] D. Herscovici, Graham’s pebbling conjecture on products of many cycles, Discrete Math. 308,

6501–6512 (2008).
[42] D. Herscovici, On graph pebbling numbers and Graham’s conjecture, Graph Theory Notes of

New York LIX, 15–21 (2010).
[43] D. Herscovici, B. Hester and G. Hurlbert, Optimal pebbling in products of graphs, Austral. J.

Combin. 50, 3–24 (2011).
[44] D. Herscovici, B. Hester and G. Hurlbert, Generalizations of GrahamâĂŹs pebbling conjecture,

Discrete Math. 312, 2286–2293 (2012).
[45] D. Herscovici, B. Hester and G. Hurlbert, t-Pebbling and extensions, Graphs and Combina-

torics, to appear.
[46] D. Herscovici and A. Higgins, The pebbling number of C5 C5, Discrete Math. 187, 123–135

(1998).
[47] M. Hoffmann, J. Matoušek, Y. Okamoto and P. Zumstein, The t-pebbling number is eventually

linear in t, Electron. J. Combin. 18(1) #153, 4 pp. (2011).
[48] J. Hopcroft, W. Paul and L. Valiant, On time versus space, J. Assoc. Comput. Mach. 24,

332–337 (1977).
[49] G. Hurlbert, Two pebbling theorems, Congr. Numer. 135, 55–63 (1998).
[50] G. Hurlbert, A survey of graph pebbling, Congr. Numer. 139, 41–64 (1999).
[51] G. H. Hurlbert, Recent progress in graph pebbling, Graph Theory Notes of New York XLIX,

25–37 (2005).
[52] G. Hurlbert, A linear optimization technique for graph pebbling, Preprints of the Centre de

Recerca Matematica 988, 39 pp. (2010).
[53] G. H. Hurlbert, General graph pebbling, Discrete Appl. Math. 161, 1221–1231 (2013).
[54] G. H. Hurlbert, The weight function lemma for graph pebbling, in preparation (2013).



GRAPH PEBBLING 31

[55] G. Hurlbert, The Graph Pebbling Page, mingus.la.asu.edu/∼hurlbert/
pebbling/pebb.html.

[56] G. Hurlbert and H. Kierstead, Graph pebbling complexity and fractional pebbling, unpublished
(2005).

[57] G. Hurlbert and B. Munyan, Cover pebbling hypercubes, Bull. Inst. Combin. Appl. 47, 71–76
(2006).

[58] L. M. Kirousis and C. H. Papadimitriou, Searching and pebbling, Theoret. Comput. Sci. 47,
205–218 (1986).

[59] K. Milans and B. Clark, The complexity of graph pebbling, SIAM J. Discrete Math. 20, 769–798
(2006).

[60] G. Y. Katona and N. Sieben, Bounds on the rubbling and optimal rubbling numbers of graphs,
Graphs and Combin. 29, 535–551 (2013).

[61] Klawe, Maria M., The complexity of pebbling for two classes of graphs. In Y. Alavi, G. Chartrand
and L. Lesniak, editors, Graph theory with applications to algorithms and computer science,
475–487, Wiley, New York (1985).

[62] M. P. Knapp, 2-adic zeros of diagonal forms and distance pebbling of graphs, preprint (2012).
[63] J. W. H. Liu, An application of generalized tree pebbling to sparse matrix factorization, SIAM

J. Algebraic Discrete Methods 8, 375–395 (1987).
[64] D. Moews, Pebbling graphs, J. Combin. Th. (Ser. B) 55, 244–252 (1992).
[65] D. Moews, Optimally pebbling hypercubes and powers, Discrete Math. 190, 271–276 (1998).
[66] J. Muntz, S. Narayan, N. Streib, and K. Van Ochten, Optimal pebbling of graphs, Discrete

Math. 307, 2315–2321 (2007).
[67] L. Pachter, H. S. Snevily, and B. Voxman, On pebbling graphs, Congr. Numer. 107, 65–80

(1995).
[68] T.D. Parsons, Pursuit-evasion in a graph. In Y. Alani and D. R. Lick, editors, Theory and

Applications of Graphs, 426–441, Springer, Berlin (1976).
[69] M. S. Paterson and C. E. Hewitt, Comparative schematology. In J. Dennis, editor, Proj. MAC

Conf. on Concurrent Systems and Parallel Computation, 119–127, Assoc. Computing Machin-
ery, New York (1970).

[70] L. Postle, Pebbling graphs of fixed diameter, preprint (2012).
[71] L. Postle, N. Streib and C. Yerger, Pebbling graphs of diameter three and four, J. Graph Theory

72, 398–417 (2013).
[72] R. Sethi, Complete register allocation problems, SIAM J. Comput. 4, 226–248 (1975).
[73] I. Streinu, L. Theran, Sparse hypergraphs and pebble game algorithms, European J. Combin.

30, 1944–1964 (2009).
[74] J. Sjostrand, The cover pebbling theorem, Electron. J. Combin. 12:#22, 5 pp. (2005).
[75] S. Wang, Pebbling and Graham’s conjecture, Discrete Math. 226, 431–438 (2001).
[76] D. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ (1996).
[77] P. Winkler, Connectedness and diameter for random orders of fixed dimension, Order 2, 165–

171 (1985).
[78] Y. Ye, P. Zhang and Y. Zhang, Pebbling number of squares of odd cycles, Discrete Math. 312,

3174–3178 (2012).
[79] Y. Ye, P. Zhang and Y. Zhang, The pebbling number of squares of even cycles, Discrete Math.

312, 3203–3211 (2012).

School of Mathematical and Statistical Sciences, Arizona State University, Tempe,

AZ, USA 85287-1804

E-mail address: hurlbert@asu.edu


